Redox properties of iron in the binding site(s) of F1ATPase from mammalian mitochondria and thermophilic bacterium PS3: a comparative study

Autor: Nadia Bortolotti, Bauerlein E, Di Pancrazio F, Giovanna Lippe, Federica Dabbeni-Sala, Irene Mavelli
Rok vydání: 1998
Předmět:
Popis: Iron ions in the two iron centers of beef heart mitochondrial F1ATPase, which we have been recently characterized (FEBS Letters 1996, 379, 231-235), exhibit different redox properties. In fact, the ATP-dependent site is able to maintain iron in the redox state of Fe(II) even in the absence of reducing agents, whereas in the nucleotide-independent site iron is oxidized to Fe(III) upon removal of the reductant. Fe(III) ions in the two sites display different reactivity towards H2O2, because only Fe(III) bound in the nucleotide-independent site rapidly reacts with H2O2 thus mediating a 30% enzyme inactivation. Thermophilic bacterium PS3 bears one Fe(III) binding site, which takes up Fe(III) either in the absence or presence of nucleotides and is unable to maintain iron in the redox state of Fe(II) in the absence of ascorbate. Fe(III) bound in thermophilic F1ATPase in a molar ratio 1:1 rapidly reacts with H2O2 mediating a 30% enzyme inactivation. These results support the presence in mitochondrial and thermophilic F1ATPase of a conserved site involved in iron binding and in oxidative inactivation, in which iron exhibits similar redox properties. On the other hand, at variance with thermophilic F1ATPase, the mitochondrial enzyme has the possibility of maintaining one equivalent of Fe(II) in its peculiar ATP-dependent site, besides one equivalent of Fe(III) in the conserved nucleotide-independent site. In this case mitochondrial F1ATPase undergoes a higher inactivation (75%) upon exposure to H2O2. Under all conditions the inactivation is significantly prevented by PBN and DMSO but not by Cu, Zn superoxide dismutase, thus suggesting the formation of OH radicals as mediators of the oxidative damage. No dityrosines, carbonyls or oxidized thiols are formed. In addition, in any cases no protein fragmentation or aggregation is observed upon the treatment with H2O2.
Databáze: OpenAIRE