Factorially graded rings and Cox rings
Autor: | Benjamin Bechtold |
---|---|
Rok vydání: | 2012 |
Předmět: |
Unique factorization
Algebra and Number Theory Mathematics::Commutative Algebra Unique factorization domain Algebraic geometry Mathematics - Commutative Algebra Commutative Algebra (math.AC) Graded rings Combinatorics Mathematics - Algebraic Geometry Homogeneous FOS: Mathematics Von Neumann regular ring Commutative algebra Algebraic number Cox rings Algebraic Geometry (math.AG) Mathematics |
Zdroj: | Journal of Algebra. 369:351-359 |
ISSN: | 0021-8693 |
DOI: | 10.1016/j.jalgebra.2012.07.030 |
Popis: | Cox rings of normal prevarieties are factorially graded, i.e. homogeneous elements allow a unique decomposition into homogeneous factors. We study this property from an algebraic point of view and give a criterion which in a sense reduces it to factoriality. This will allow us to detect and construct Cox rings in a purely algebraic manner. |
Databáze: | OpenAIRE |
Externí odkaz: |