Regularity of the distance function to smooth hypersurfaces in some two-step carnot groups
Autor: | Francescopaolo Montefalcone, Fausto Ferrari, Nicola Arcozzi |
---|---|
Přispěvatelé: | Arcozzi, Nicola, Ferrari, Fausto, Montefalcone, Francescopaolo |
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
Pure mathematics
Distance from hypersurface Carnot group General Mathematics Two step Normal geodesics Metric normal 01 natural sciences Distance from hypersurfaces symbols.namesake Mathematics::Metric Geometry Mathematics (all) 0101 mathematics CC-metric Mathematics Normal geodesic 010102 general mathematics Carnot groups CC-metrics Sub-Riemannian geometry Physics::History of Physics 010101 applied mathematics symbols Mathematics::Differential Geometry Carnot cycle |
Popis: | We study geometric properties of the Carnot-Carathéodory signed distance δs to a smooth hypersurface S in some 2-step Carnot groups. In particular, a sub-Riemannian version of Gauss' Lemma is proved. |
Databáze: | OpenAIRE |
Externí odkaz: |