Polar Homology
Autor: | Khesin, Boris, Rosly, Alexei |
---|---|
Rok vydání: | 2003 |
Předmět: |
High Energy Physics - Theory
Mathematics::Complex Variables 010308 nuclear & particles physics Computer Science::Information Retrieval General Mathematics FOS: Physical sciences Geometric Topology (math.GT) Mathematics::Geometric Topology 01 natural sciences Mathematics - Algebraic Geometry Mathematics - Geometric Topology High Energy Physics - Theory (hep-th) 0103 physical sciences FOS: Mathematics 010306 general physics Algebraic Geometry (math.AG) Mathematics::Symplectic Geometry |
Zdroj: | Canadian Journal of Mathematics. 55:1100-1120 |
ISSN: | 1496-4279 0008-414X |
DOI: | 10.4153/cjm-2003-043-1 |
Popis: | For complex projective manifolds we introduce polar homology groups, which are holomorphic analogues of the homology groups in topology. The polar k-chains are subvarieties of complex dimension k with meromorphic forms on them, while the boundary operator is defined by taking the polar divisor and the Poincare residue on it. 19 pages |
Databáze: | OpenAIRE |
Externí odkaz: |