YeastSpotter: accurate and parameter-free web segmentation for microscopy images of yeast cells

Autor: Alan M. Moses, Alex X. Lu, Taraneh Zarin, Ian Shenyen Hsu
Rok vydání: 2019
Předmět:
Zdroj: Bioinformatics
ISSN: 1367-4811
Popis: Summary We introduce YeastSpotter, a web application for the segmentation of yeast microscopy images into single cells. YeastSpotter is user-friendly and generalizable, reducing the computational expertise required for this critical preprocessing step in many image analysis pipelines. Availability and implementation YeastSpotter is available at http://yeastspotter.csb.utoronto.ca/. Code is available at https://github.com/alexxijielu/yeast_segmentation. Supplementary information Supplementary data are available at Bioinformatics online.
Databáze: OpenAIRE