Duality and approximation of Bergman spaces

Autor: Debraj Chakrabarti, Luke D. Edholm, J. D. McNeal
Rok vydání: 2018
Předmět:
DOI: 10.48550/arxiv.1804.02746
Popis: Expected duality and approximation properties are shown to fail on Bergman spaces of domains in C n , via examples. When the domain admits an operator satisfying certain mapping properties, positive duality and approximation results are proved. Such operators are constructed on generalized Hartogs triangles. On a general bounded Reinhardt domain, norm convergence of Laurent series of Bergman functions is shown. This extends a classical result on Hardy spaces of the unit disc.
Databáze: OpenAIRE