Attitude Classification in Adjacency Pairs of a Human-Agent Interaction with Hidden Conditional Random Fields

Autor: Slim Essid, Chloé Clavel, Valentin Barriere
Přispěvatelé: Département Images, Données, Signal (IDS), Télécom ParisTech, Signal, Statistique et Apprentissage (S2A), Laboratoire Traitement et Communication de l'Information (LTCI), Institut Mines-Télécom [Paris] (IMT)-Télécom Paris-Institut Mines-Télécom [Paris] (IMT)-Télécom Paris, Institut Mines-Télécom [Paris] (IMT)-Télécom Paris
Rok vydání: 2018
Předmět:
Zdroj: ICASSP
ICASSP 2018-2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
ICASSP 2018-2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Apr 2018, Calgary, Canada. pp.4949-4953, ⟨10.1109/ICASSP.2018.8462160⟩
DOI: 10.1109/icassp.2018.8462160
Popis: In this paper, the main goal is to classify, in a human-agent interaction, the attitude of the user using hidden conditional random fields. This model allows us to capture the dynamics of the interaction in the pairs of speech turns (adjacency pairs) analyzed by our system. High level linguistic features are computed at word level. The features include syntactic features, a statistical word embedding model and subjectivity lexicons. The proposed system is evaluated on the SEMAINE corpus. We obtain a Fl-score of 0.80, labeling using the most probable sequence of hidden states.
Databáze: OpenAIRE