Rankine--Hugoniot conditions for fluids whose energy depends on space and time derivatives of density
Autor: | Sergey Gavrilyuk, Henri Gouin |
---|---|
Přispěvatelé: | Institut universitaire des systèmes thermiques industriels (IUSTI), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Shock wave
General Physics and Astronomy FOS: Physical sciences Energy–momentum relation Physics - Classical Physics System of linear equations 01 natural sciences capillary fluids bubbly liquid 010305 fluids & plasmas symbols.namesake 0103 physical sciences Hamilton's principle [PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph] 0101 mathematics Physics Conservation law Spacetime Applied Mathematics 010102 general mathematics Rankine–Hugoniot conditions Fluid Dynamics (physics.flu-dyn) Classical Physics (physics.class-ph) Mechanics shock waves Physics - Fluid Dynamics dispersive systems Action (physics) Computational Mathematics Rankine-Hugoniot's conditions Modeling and Simulation symbols 70H25 76L05 76M30 76 B45 76T10 |
Zdroj: | Wave Motion Wave Motion, Elsevier, 2020, 98, pp.102620. ⟨10.1016/j.wavemoti.2020.102620⟩ Wave Motion, 2020, 98, pp.102620. ⟨10.1016/j.wavemoti.2020.102620⟩ |
ISSN: | 0165-2125 1878-433X |
DOI: | 10.1016/j.wavemoti.2020.102620⟩ |
Popis: | International audience; By using the Hamilton principle of stationary action, we derive the governing equations and Rankine-Hugoniot conditions for continuous media where the specific energy depends on the space and time density derivatives. The governing system of equations is a time reversible dispersive system of conservation laws for the mass, momentum and energy. We obtain additional relations to the Rankine-Hugoniot conditions coming from the conservation laws and discuss the well-founded of shock wave discontinuities for dispersive systems. |
Databáze: | OpenAIRE |
Externí odkaz: |