Rankine--Hugoniot conditions for fluids whose energy depends on space and time derivatives of density

Autor: Sergey Gavrilyuk, Henri Gouin
Přispěvatelé: Institut universitaire des systèmes thermiques industriels (IUSTI), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Wave Motion
Wave Motion, Elsevier, 2020, 98, pp.102620. ⟨10.1016/j.wavemoti.2020.102620⟩
Wave Motion, 2020, 98, pp.102620. ⟨10.1016/j.wavemoti.2020.102620⟩
ISSN: 0165-2125
1878-433X
DOI: 10.1016/j.wavemoti.2020.102620⟩
Popis: International audience; By using the Hamilton principle of stationary action, we derive the governing equations and Rankine-Hugoniot conditions for continuous media where the specific energy depends on the space and time density derivatives. The governing system of equations is a time reversible dispersive system of conservation laws for the mass, momentum and energy. We obtain additional relations to the Rankine-Hugoniot conditions coming from the conservation laws and discuss the well-founded of shock wave discontinuities for dispersive systems.
Databáze: OpenAIRE