Empirical versus asymptotic rate of convergence of a class of methods for solving a polynomial equation
Autor: | Masao Igarashi, Tjalling Ypma |
---|---|
Rok vydání: | 1997 |
Předmět: |
Polynomial
Iterative method Applied Mathematics Mathematical analysis Parameterized complexity Algebraic equation symbols.namesake Computational Mathematics Asymptotic rate of convergence Rate of convergence Convergence (routing) symbols Newton-Raphson Constant (mathematics) Newton's method Polynomial equation Mathematics |
Zdroj: | Journal of Computational and Applied Mathematics. 82(1-2):229-237 |
ISSN: | 0377-0427 |
DOI: | 10.1016/s0377-0427(97)00077-0 |
Popis: | Given alternative methods with identical order of convergence for solving the polynomial equation -(z) = 0, the method with the smaller asymptotic error constant might be assumed to be superior in terms of the number of iterations required for convergence. We present empirical evidence for a parameterized class of methods of second order showing that a parameter choice which does not correspond to the minimal asymptotic error constant may nevertheless be superior in practice. |
Databáze: | OpenAIRE |
Externí odkaz: |