Critical surface of the 1-2 model
Autor: | Geoffrey R Grimmett, Zhongyang Li |
---|---|
Přispěvatelé: | Grimmett, Geoffrey [0000-0001-7646-3368], Apollo - University of Cambridge Repository |
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
General Mathematics
05C70 010102 general mathematics Probability (math.PR) 82B20 FOS: Physical sciences Mathematical Physics (math-ph) 01 natural sciences 010104 statistics & probability 60K35 0103 physical sciences FOS: Mathematics Mathematics - Combinatorics 82B20 60K35 05C70 010307 mathematical physics Combinatorics (math.CO) 0101 mathematics Nuclear Experiment Mathematics - Probability Mathematical Physics |
Popis: | The 1-2 model on the hexagonal lattice is a model of statistical mechanics in which each vertex is constrained to have degree either $1$ or $2$. There are three types of edge, and three corresponding parameters $a$, $b$, $c$. It is proved that, when $a \ge b \ge c > 0$, the surface given by $\sqrt a = \sqrt b + \sqrt c$ is critical. The proof hinges upon a representation of the partition function in terms of that of a certain dimer model. This dimer model may be studied via the Pfaffian representation of Fisher, Kasteleyn, and Temperley. It is proved, in addition, that the two-edge correlation function converges exponentially fast with distance when $\sqrt a \ne \sqrt b + \sqrt c$. Many of the results may be extended to periodic models. To appear in 'International Mathematics Research Notices' |
Databáze: | OpenAIRE |
Externí odkaz: |