The Numerical Simulation for Asymptotic Normality of the Intensity Obtained as a Product of a Periodic Function with the Power Trend Function of a Nonhomogeneous Poisson Process

Autor: Mahyus Ihsan, Vina Apriliani, Ikhsan Maulidi
Rok vydání: 2020
Předmět:
Zdroj: Desimal, Vol 3, Iss 3, Pp 271-278 (2020)
ISSN: 2613-9081
2613-9073
DOI: 10.24042/djm.v3i3.6374
Popis: In this article, we provided a numerical simulation for asymptotic normality of a kernel type estimator for the intensity obtained as a product of a periodic function with the power trend function of a nonhomogeneous Poisson Process. The aim of this simulation is to observe how convergence the variance and bias of the estimator. The simulation shows that the larger the value of power function in intensity function, it is required the length of the observation interval to obtain the convergent of the estimator.
Databáze: OpenAIRE