Bipartite biregular Moore graphs

Autor: Nacho López, Cristina Dalfó, Miguel Angel Fiol, Gabriela Araujo-Pardo
Přispěvatelé: Universitat Politècnica de Catalunya. Departament de Matemàtiques, Universitat Politècnica de Catalunya. COMBGRAPH - Combinatòria, Teoria de Grafs i Aplicacions
Rok vydání: 2021
Předmět:
Moore bound
0102 computer and information sciences
02 engineering and technology
01 natural sciences
Theoretical Computer Science
Combinatorics
Diameter
Computer Science::Discrete Mathematics
FOS: Mathematics
0202 electrical engineering
electronic engineering
information engineering

Discrete Mathematics and Combinatorics
Mathematics - Combinatorics
Bipartite biregular graphs
Mathematics
Discrete mathematics
Mathematics::Combinatorics
Degree (graph theory)
Grafs
Teoria de

020206 networking & telecommunications
Graph theory
010201 computation theory & mathematics
Independent set
Bipartite graph
Combinatorics (math.CO)
Isomorphism
05 Combinatorics::05C Graph theory [Classificació AMS]
Adjacency spectrum
Matemàtiques i estadística::Matemàtica discreta::Teoria de grafs [Àrees temàtiques de la UPC]
5C35
51E12
05C50
Zdroj: Repositorio Abierto de la UdL
Universitad de Lleida
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Discrete Mathematics
Popis: A bipartite graph $G=(V,E)$ with $V=V_1\cup V_2$ is biregular if all the vertices of a stable set $V_i$ have the same degree $r_i$ for $i=1,2$. In this paper, we give an improved new Moore bound for an infinite family of such graphs with odd diameter. This problem was introduced in 1983 by Yebra, Fiol, and F\`abrega.\\ Besides, we propose some constructions of bipartite biregular graphs with diameter $d$ and large number of vertices $N(r_1,r_2;d)$, together with their spectra. In some cases of diameters $d=3$, $4$, and $5$, the new graphs attaining the Moore bound are unique up to isomorphism.
Comment: 19 pages, 2 figures
Databáze: OpenAIRE