Novel LTCC-potentiometric microfluidic device for biparametric analysis of organic compounds carrying plastic antibodies as ionophores: Application to sulfamethoxazole and trimethoprim
Autor: | E. Arasa, Cynthia S. Martínez-Cisneros, Julián Alonso-Chamarro, M.G.F. Sales, Maria C. B. S. M. Montenegro, Mar Puyol, Sofia A. A. Almeida |
---|---|
Přispěvatelé: | Repositório Científico do Instituto Politécnico do Porto |
Rok vydání: | 2011 |
Předmět: |
Ceramic tapes
Ceramics Analyte Materials science Sulfamethoxazole Potentiometric titration Biomedical Engineering Biophysics Biosensing Techniques 02 engineering and technology 01 natural sciences Reference electrode Trimethoprim chemistry.chemical_compound Electrochemistry Organic Chemicals Detection limit Miniaturization Materiales Chromatography 010401 analytical chemistry Equipment Design General Medicine Microfluidic Analytical Techniques 021001 nanoscience & nanotechnology 6. Clean water 0104 chemical sciences Equipment Failure Analysis Membrane chemistry Reagent Biparametric analysis Electrode Potentiometry Glutaraldehyde 0210 nano-technology Biotechnology |
Zdroj: | e-Archivo. Repositorio Institucional de la Universidad Carlos III de Madrid instname Repositório Científico de Acesso Aberto de Portugal Repositório Científico de Acesso Aberto de Portugal (RCAAP) instacron:RCAAP e-Archivo: Repositorio Institucional de la Universidad Carlos III de Madrid Universidad Carlos III de Madrid (UC3M) |
ISSN: | 0956-5663 |
DOI: | 10.1016/j.bios.2011.09.011 |
Popis: | Monitoring organic environmental contaminants is of crucial importance to ensure public health. This requires simple, portable and robust devices to carry out on-site analysis. For this purpose, a low-temperature co-fired ceramics (LTCC) microfluidic potentiometric device (LTCC/ POT) was developed for the first time for an organic compound: sulfamethoxazole (SMX). Sensory materials relied on newly designed plastic antibodies. Sol–gel, self-assembling monolayer and molecular-imprinting techniques were merged for this purpose. Silica beads were amine-modified and linked to SMX via glutaraldehyde modification. Condensation polymerization was conducted around SMX to fill the vacant spaces. SMX was removed after, leaving behind imprinted sites of complementary shape. The obtained particles were used as ionophores in plasticized PVC membranes. The most suitable membrane composition was selected in steady-state assays. Its suitability to flow analysis was verified in flow-injection studies with regular tubular electrodes. The LTCC/ POT device integrated a bidimensional mixer, an embedded reference electrode based on Ag/AgCl and an Ag-based contact screen-printed under a micromachined cavity of 600 m depth. The sensing membranes were deposited over this contact and acted as indicating electrodes. Under optimum conditions, the SMX sensor displayed slopes of about −58.7 mV/decade in a range from 12.7 to 250 g/mL, providing a detection limit of 3.85 g/mL and a sampling throughput of 36 samples/h with a reagent consumption of 3.3 mL per sample. The system was adjusted later to multiple analyte detection by including a second potentiomet-ric cell on the LTCC/ POT device. No additional reference electrode was required. This concept was applied to Trimethoprim (TMP), always administered concomitantly with sulphonamide drugs, and tested in fish-farming waters. The biparametric microanalyzer displayed Nernstian behaviour, with aver-age slopes −54.7 (SMX) and +57.8 (TMP) mV/ decade. To demonstrate the microanalyzer capabilities for real applications, it was successfully applied to single and simultaneous determination of SMX and TMP in aquaculture waters. The authors acknowledge the financial support from FCT, Fundacão para a Ciência e Tecnologia/FEDER (project PTDC/AGR-AAM/68359/2006). Oneofus (Almeida SAA) is grateful to FCT for the PhD Grant (SFRH/BD/42509/2007). Publicado |
Databáze: | OpenAIRE |
Externí odkaz: |