Determinants of biventricular cardiac function: a mathematical model study on geometry and myofiber orientation

Autor: Tammo Delhaas, JW Wilco Kroon, F Frits Prinzen, Phm Peter Bovendeerd, MH Marieke Pluijmert, A Adrián Flores de la Parra
Přispěvatelé: Biomedical Engineering, Cardiovascular Biomechanics, Biomedische Technologie, RS: CARIM - R2.09 - Cardiovascular system dynamics, Promovendi CD, RS: CARIM - R2.08 - Electro mechanics, Fysiologie
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: Biomechanics and Modeling in Mechanobiology, 16(2). Springer
Biomechanics and Modeling in Mechanobiology
Biomechanics and modeling in mechanobiology, 16(2), 721-729. Springer
ISSN: 1617-7959
Popis: In patient-specific mathematical models of cardiac electromechanics, usually a patient-specific geometry and a generic myofiber orientation field are used as input, upon which myocardial tissue properties are tuned to clinical data. It remains unclear to what extent deviations in myofiber orientation and geometry between model and patient influence model predictions on cardiac function. Therefore, we evaluated the sensitivity of cardiac function for geometry and myofiber orientation in a biventricular (BiV) finite element model of cardiac mechanics. Starting out from a reference geometry in which myofiber orientation had no transmural component, two new geometries were defined with either a 27 % decrease in LV short- to long-axis ratio, or a 16 % decrease of RV length, but identical LV and RV cavity and wall volumes. These variations in geometry caused differences in both local myofiber and global pump work below 6 %. Variation of fiber orientation was induced through adaptive myofiber reorientation that caused an average change in fiber orientation of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sim }8^\circ $$\end{document}∼8∘ predominantly through the formation of a component in transmural direction. Reorientation caused a considerable increase in local myofiber work \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\sim }18\,\%)$$\end{document}(∼18%) and in global pump work \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\sim }17\,\%)$$\end{document}(∼17%) in all three geometries, while differences between geometries were below 5 %. The findings suggest that implementing a realistic myofiber orientation is at least as important as defining a patient-specific geometry. The model for remodeling of myofiber orientation seems a useful approach to estimate myofiber orientation in the absence of accurate patient-specific information.
Databáze: OpenAIRE