Magnetic resonance spectroscopy of an atomically thin material using a single-spin qubit
Autor: | Efthimios Kaxiras, Shiang Fang, Elana Urbach, Javier Sanchez-Yamagishi, Igor Lovchinsky, Takashi Taniguchi, Alexei Bylinskii, Mikhail D. Lukin, Philip Kim, Hongkun Park, Trond Andersen, Soonwon Choi, Kenji Watanabe |
---|---|
Rok vydání: | 2017 |
Předmět: |
Multidisciplinary
Condensed matter physics Spins Chemistry Diamond 02 engineering and technology engineering.material 021001 nanoscience & nanotechnology 01 natural sciences Atomic units Characterization (materials science) Qubit 0103 physical sciences engineering 010306 general physics 0210 nano-technology Spectroscopy Spin (physics) Nuclear quadrupole resonance |
Zdroj: | Science. 355:503-507 |
ISSN: | 1095-9203 0036-8075 |
Popis: | Getting a sense of atomically thin materials Two-dimensional materials such as graphene and transition metal dichalcogenides provide a powerful platform for optoelectronic applications. As the materials get thinner, however, characterizing the electronic properties can present an experimental challenge. Lovchinsky et al. demonstrate that atomic-like impurities in diamond can be used to probe the properties of 2D materials by nanometer-scale nuclear quadrupole resonance spectroscopy. Coherent manipulation of shallow nitrogen-vacancy color centers enabled probing of nanoscale ensembles down to several tens of nuclear spins in atomically thin hexagonal boron nitride. Science , this issue p. 503 |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |