Effects of cyclin-dependent kinase-5 activity on apoptosis and tau phosphorylation in immortalized mouse brain cortical cells

Autor: Shirley B. Shelton, Gail V.W. Johnson, Pavan K. Krishnamurthy
Rok vydání: 2004
Předmět:
Zdroj: Journal of Neuroscience Research. 76:110-120
ISSN: 1097-4547
0360-4012
DOI: 10.1002/jnr.20051
Popis: Cyclin-dependent kinase-5 (CDK5), a unique CDK family member, is active primarily in the central nervous system (CNS). Previous studies suggest that CDK5 is proapoptotic and contributes to tau hyperphosphorylation and neurodegeneration in Alzheimer's disease. The objective of this study was to examine CDK5 effects on apoptotic progression and tau phosphorylation. Immortalized embryonic mouse brain cortical cells were used to establish a stable cell line that overexpressed wild-type human tau. In these studies, thapsigargin, which induces endoplasmic reticulum stress and can cause accumulation of misfolded proteins, was used to induce apoptosis. Caspase-3 activity and poly-(ADP-ribose)-polymerase (PARP) cleavage, as measures of apoptosis, were significantly increased 24 and 48 hr after thapsigargin treatment, and these events were unaffected by tau expression. Although transient coexpression of CDK5 and its activator, p25, increased CDK5 activity greater than tenfold, increases in caspase-3 activity in response to thapsigargin treatment were unaffected by the presence of CDK5/p25. Tau phosphorylation at the PHF-1 epitope, but not the Tau-1 epitope, was increased significantly in CDK5/p25-transfected cells compared to cells transfected with dominant negative CDK5 (DNCDK5). The PHF-1 epitope remained phosphorylated until 48 hr after thapsigargin treatment in the CDK5/p25-transfected cells. Over the course of apoptosis in this model, phosphorylation of the Tau-1 epitope was unaffected in cells transfected with DNCDK5, vector, or CDK5/p25. In summary, these results demonstrate that CDK5 does not have a significant impact on tau phosphorylation and thapsigargin-induced apoptosis in this neuronal cell model.
Databáze: OpenAIRE