Semilocal Convergence of the Extension of Chun’s Method

Autor: Eulalia Martínez, Alicia Cordero, María P. Vassileva, Juan R. Torregrosa, Javier G. Maimó
Rok vydání: 2021
Předmět:
Zdroj: Axioms, Vol 10, Iss 161, p 161 (2021)
RiuNet. Repositorio Institucional de la Universitat Politécnica de Valéncia
instname
Axioms
Volume 10
Issue 3
ISSN: 2075-1680
DOI: 10.3390/axioms10030161
Popis: [EN] In this work, we use the technique of recurrence relations to prove the semilocal convergence in Banach spaces of the multidimensional extension of Chun's iterative method. This is an iterative method of fourth order, that can be transferred to the multivariable case by using the divided difference operator. We obtain the domain of existence and uniqueness by taking a suitable starting point and imposing a Lipschitz condition to the first Frechet derivative in the whole domain. Moreover, we apply the theoretical results obtained to a nonlinear integral equation of Hammerstein type, showing the applicability of our results.
This research was supported by PGC2018-095896-B-C22 (MCIU/AEI/FEDER, UE) and FONDOCYT 027-2018 Republica Dominicana.
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje