Coating electroaccretion on galvanized iron and aluminum in seawater
Autor: | Luca Magagnin, S. Maffi, Alessandro Benedetti, G. Salvago |
---|---|
Rok vydání: | 2004 |
Předmět: |
Materials science
Brucite Magnesium General Chemical Engineering Gas evolution reaction Metallurgy Artificial seawater chemistry.chemical_element engineering.material Electroaccretion Galvanization Corrosion symbols.namesake Calcareous deposit Coating chemistry Electrochemistry engineering symbols Seawater Galvanized iron Aluminum |
Zdroj: | Electrochimica acta 50 (2004): 169–178. doi:10.1016/j.electacta.2004.07.028 info:cnr-pdr/source/autori:G. Salvago; S. Maffi; A. Benedetti; L. Magagnin/titolo:Coating electroaccretion on galvanized iron and aluminum in seawater/doi:10.1016%2Fj.electacta.2004.07.028/rivista:Electrochimica acta/anno:2004/pagina_da:169/pagina_a:178/intervallo_pagine:169–178/volume:50 |
ISSN: | 0013-4686 |
DOI: | 10.1016/j.electacta.2004.07.028 |
Popis: | Coating electroaccretion on galvanized iron and aluminum 1100 under cathodic polarization in artificial and natural seawaterwas investigated through electrochemical tests and optical imaging techniques. Biofilm affects the current density and the morphologies of gas evolution, particularly the maximum size of the gas bubbles and the interaction between gas evolution and calcareous deposit. Coating mineral composition is related to the type of metallic material and can be different according to growth in natural or artificial seawater. On galvanized iron in ASTM and natural seawater at potential -1.2V versus Ag/AgCl. Coatings grown on aluminum 1100 are different from those on galvanized iron. In ASTM seawater, the coating on aluminum 1100 is composed of aluminum oxide and Mg4Al2(OH)14·2H2O; in natural seawater, only of aluminum oxide. On specimens coupled with magnesium anode, the coating does not contain brucite and is composed of aragonite with Mg6Al2(OH)18·4H2O islands. |
Databáze: | OpenAIRE |
Externí odkaz: |