Detection of replay attacks in autonomous vehicles using a bank of QPV observers

Autor: Helem Sabina Sánchez, Teresa Escobet, Vicenç Puig, Damiano Rotondo, Joseba Quevedo
Přispěvatelé: Universitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial, Universitat Politècnica de Catalunya. Departament d'Enginyeria Minera, Industrial i TIC, Universitat Politècnica de Catalunya. SAC - Sistemes Avançats de Control
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Mediterranean Conference on Control and Automation (MED)
MED
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
ISSN: 2017-8840
Popis: © 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works This paper addresses the problem of replay attack detection in autonomous vehicles. Due to the strong presence of nonlinearities, traditional approaches based on linear approximations of the dynamics would not work effectively. For this reason, the proposed approach is based on a bank of quadratic parameter varying (QPV) observers, designed in such a way that each observer is insensitive to a replay attack that affects one specific sensor channel. This feature allows the development of a decision algorithm, whose effectiveness is validated by means of simulation results. This work was partially supported by the University of Stavanger through the project IN-12267. This work has been partially funded by the Spanish State Research Agency (AEI) and the European Regional Development Fund (ERFD) through the projects SCAV (ref. MINECO DPI2017-88403-R) and DEOCS (ref. MINECO DPI2016-76493), and also by AGAUR ACCIO RIS3CAT UTILITIES 4.0 – P7 SECUTIL.
Databáze: OpenAIRE