Scaling limit of the odometer in divisible sandpiles

Autor: Rajat Subhra Hazra, Alessandra Cipriani, Alexandre Stauffer, Wioletta Ruszel
Rok vydání: 2016
Předmět:
Zdroj: Probability Theory and Related Fields
Probability Theory and Related Fields, 172(3-4)
Probability Theory and Related Fields, 172(3-4), 829. Springer New York
ISSN: 0178-8051
DOI: 10.48550/arxiv.1604.03754
Popis: In a recent work Levine et al. (2015) prove that the odometer function of a divisible sandpile model on a finite graph can be expressed as a shifted discrete bilaplacian Gaussian field. For the discrete torus, they suggest the possibility that the scaling limit of the odometer may be related to the continuum bilaplacian field. In this work we show that in any dimension the rescaled odometer converges to the continuum bilaplacian field on the unit torus.
Comment: 29 pages. Minor corrections in the proof of the scaling limit for general weights made
Databáze: OpenAIRE