Quantification of global myocardial oxygenation in humans: initial experience
Autor: | Jie Zheng, Robert D. O'Connor, Pamela K. Woodard, Robert J. Gropler, Matt Lyons, Donna Lesniak, Kyle S. McCommis |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2010 |
Předmět: |
Adult
Male medicine.medical_specialty lcsh:Diseases of the circulatory (Cardiovascular) system Adenosine Time Factors Technical notes Vasodilator Agents Blood Pressure Hyperemia Perfusion scanning 030218 nuclear medicine & medical imaging 03 medical and health sciences Coronary circulation Oxygen Consumption 0302 clinical medicine Heart Rate Predictive Value of Tests Coronary Circulation Internal medicine Heart rate medicine Humans Radiology Nuclear Medicine and imaging Oximetry Coronary sinus Angiology Medicine(all) Radiological and Ultrasound Technology medicine.diagnostic_test Phantoms Imaging business.industry Myocardium Models Cardiovascular Magnetic resonance imaging Oxygenation Blood flow Magnetic Resonance Imaging Oxygen medicine.anatomical_structure lcsh:RC666-701 Cardiology Feasibility Studies Female Cardiology and Cardiovascular Medicine business 030217 neurology & neurosurgery |
Zdroj: | Journal of Cardiovascular Magnetic Resonance, Vol 12, Iss 1, p 34 (2010) Journal of Cardiovascular Magnetic Resonance |
ISSN: | 1097-6647 |
Popis: | Purpose To assess the feasibility of our newly developed cardiovascular magnetic resonance (CMR) methods to quantify global and/or regional myocardial oxygen consumption rate (MVO2) at rest and during pharmacologically-induced vasodilation in normal volunteers. Methods A breath-hold T2 quantification method is developed to calculate oxygen extraction fraction (OEF) and MVO2 rate at rest and/or during hyperemia, using a two-compartment model. A previously reported T2 quantification method using turbo-spin-echo sequence was also applied for comparison. CMR scans were performed in 6 normal volunteers. Each imaging session consisted of imaging at rest and during adenosine-induced vasodilation. The new T2 quantification method was applied to calculate T2 in the coronary sinus (CS), as well as in myocardial tissue. Resting CS OEF, representing resting global myocardial OEF, and myocardial OEF during adenosine vasodilation were then calculated by the model. Myocardial blood flow (MBF) was also obtained to calculate MVO2, by using a first-pass perfusion imaging approach. Results The T2 quantification method yielded a hyperemic OEF of 0.37 ± 0.05 and a hyperemic MVO2 of 9.2 ± 2.4 μmol/g/min. The corresponding resting values were 0.73 ± 0.05 and 5.2 ± 1.7 μmol/g/min respectively, which agreed well with published literature values. The MVO2 rose proportionally with rate-pressure product from the rest condition. The T2 sensitivity is approximately 95% higher with the new T2 method than turbo-spin-echo method. Conclusion The CMR oxygenation method demonstrates the potential for non-invasive estimation of myocardial oxygenation, and should be explored in patients with altered myocardial oxygenation. |
Databáze: | OpenAIRE |
Externí odkaz: |