Nonstoichiometric Cu0.6Ni0.4Co2O4 Nanowires as an Anode Material for High Performance Lithium Storage
Autor: | Quanbing Liu, Jinyun Liao, Yufa Feng, Junhao Li, Ningyi Jiang, Hao Li |
---|---|
Rok vydání: | 2020 |
Předmět: |
cu0.6ni0.4co2o4 nanowires
Materials science Communication General Chemical Engineering Doping Nanowire Oxide chemistry.chemical_element lithium-ion battery doping nonstoichiometric Electrochemistry Lithium-ion battery Anode lcsh:Chemistry chemistry.chemical_compound anode material lcsh:QD1-999 Transition metal chemistry Chemical engineering General Materials Science Lithium Cu0.6Ni0.4Co2O4 nanowires |
Zdroj: | Nanomaterials, Vol 10, Iss 2, p 191 (2020) Nanomaterials |
ISSN: | 2079-4991 |
Popis: | Transition metal oxide is one of the most promising anode materials for lithium-ion batteries. Generally, the electrochemical property of transition metal oxides can be improved by optimizing their element components and controlling their nano-architecture. Herein, we designed nonstoichiometric Cu0.6Ni0.4Co2O4 nanowires for high performance lithium-ion storage. It is found that the specific capacity of Cu0.6Ni0.4Co2O4 nanowires remain 880 mAh g−1 after 50 cycles, exhibiting much better electrochemical performance than CuCo2O4 and NiCo2O4. After experiencing a large current charge and discharge state, the discharge capacity of Cu0.6Ni0.4Co2O4 nanowires recovers to 780 mAh g−1 at 50 mA g−1, which is ca. 88% of the initial capacity. The high electrochemical performance of Cu0.6Ni0.4Co2O4 nanowires is related to their better electronic conductivity and synergistic effect of metals. This work may provide a new strategy for the design of multicomponent transition metal oxides as anode materials for lithium-ion batteries. |
Databáze: | OpenAIRE |
Externí odkaz: |