Some remarks on the Pigola-Rigoli-Setti version of the Omori-Yau maximum principle
Autor: | Francisco Fontenele, Alexandre Paiva Barreto |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2013 |
Předmět: |
Hessian matrix
Mathematics - Differential Geometry Pure mathematics 53C21 35B50 Logical equivalence Scope (project management) General Mathematics Curvature law.invention symbols.namesake Maximum principle Differential Geometry (math.DG) law Bounded function FOS: Mathematics symbols Mathematics::Differential Geometry Laplace operator Manifold (fluid mechanics) Mathematics |
ISSN: | 0004-9727 |
Popis: | We prove that the hypotheses in the Pigola–Rigoli–Setti version of the Omori–Yau maximum principle are logically equivalent to the assumption that the manifold carries a${C}^{2} $proper function whose gradient and Hessian (Laplacian) are bounded. In particular, this result extends the scope of the original Omori–Yau principle, formulated in terms of lower bounds for curvature. |
Databáze: | OpenAIRE |
Externí odkaz: |