Some remarks on the Pigola-Rigoli-Setti version of the Omori-Yau maximum principle

Autor: Francisco Fontenele, Alexandre Paiva Barreto
Jazyk: angličtina
Rok vydání: 2013
Předmět:
ISSN: 0004-9727
Popis: We prove that the hypotheses in the Pigola–Rigoli–Setti version of the Omori–Yau maximum principle are logically equivalent to the assumption that the manifold carries a${C}^{2} $proper function whose gradient and Hessian (Laplacian) are bounded. In particular, this result extends the scope of the original Omori–Yau principle, formulated in terms of lower bounds for curvature.
Databáze: OpenAIRE