Scalar relativistic calculations of hyperfine coupling tensors using the Douglas-Kroll-Hess method with a finite-size nucleus model
Autor: | Irina Malkin, Vladimir G. Malkin, Olga L. Malkina, Martin Kaupp, Elena Malkin |
---|---|
Rok vydání: | 2006 |
Předmět: |
Physics
Magnetic moment Gaussian Nuclear Theory Scalar (physics) General Physics and Astronomy Charge (physics) Effective nuclear charge Hybrid functional symbols.namesake Nuclear magnetic resonance Quantum electrodynamics symbols Physics::Atomic Physics Physical and Theoretical Chemistry Wave function Hyperfine structure |
Zdroj: | Physical chemistry chemical physics : PCCP. 8(35) |
ISSN: | 1463-9076 |
Popis: | A scalar relativistic method to calculate hyperfine coupling tensors at the Douglas-Kroll-Hess level has been extended to incorporate a finite-size nucleus model using a Gaussian charge and magnetic moment distribution. Density functional calculations at gradient-corrected and hybrid functional levels have been carried out for the group 11 atoms and for a set of small group 12 molecules, comparing nonrelativistic as well as scalar relativistic results at second-order Douglas-Kroll-Hess level with and without finite-size nucleus. While nonrelativistic calculations underestimate isotropic hyperfine couplings increasingly with increasing nuclear charge, scalar relativistic calculations with point nucleus provide somewhat overestimated values. Inclusion of the finite-size nuclear model in the calculation of the wavefunction, and in the transformed hyperfine operators both decrease the magnitude of the hyperfine couplings. The effects, which are cumulative, improve agreement with experiment. |
Databáze: | OpenAIRE |
Externí odkaz: |