Lasers for Satellite Uplinks and Downlinks
Autor: | Timothy Sands, Mark Dmytryszyn, Matthew Crook |
---|---|
Přispěvatelé: | Naval Postgraduate School, Space Systems Academic Group, Mechanical Engineering |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
better resolution
Space segment 010504 meteorology & atmospheric sciences far-shorter time from click to customer Computer science telescopes lightweight telescope mirrors adaptive optics increased accuracy more bandwidth cluster of satellites innovative platform more capabilities into smaller packages 010502 geochemistry & geophysics 01 natural sciences law.invention law Telecommunications link Materials Chemistry Adaptive optics lcsh:Science 0105 earth and related environmental sciences business.industry Bandwidth (signal processing) Geosynchronous orbit Laser Communications satellite lcsh:Q Telecommunications business Free-space optical communication |
Zdroj: | Sci Volume 2 Issue 3 Issue 2 Sci; Volume 3; Issue 1; Pages: 4 Sci, Vol 3, Iss 4, p 4 (2021) |
ISSN: | 2413-4155 |
DOI: | 10.3390/sci2030071 |
Popis: | The article of record as published may be found at http://dx.doi.org/10.3390/sci2030071 The use of Light Amplification by Stimulated Emission of Radiation (i.e., LASERs or lasers) by the U.S. Department of Defense is not new and includes laser weapons guidance, laser-aided measurements, even lasers as weapons (e.g., Airborne Laser). Lasers in support of telecommunications is also not new. The use of laser light in fiber optics shattered thoughts on communications bandwidth and throughput. Even the use of lasers in space is no longer new. Lasers are being used for satellite-to-satellite crosslinking. Laser communication can transmit orders-of-magnitude more data using orders-of-magnitude less power and can do so with minimal risk of exposure to the sending and receiving terminals. What is new is using lasers as the uplink and downlink between the terrestrial segment and the space segment of satellite systems. More so, the use of lasers to transmit and receive data between moving terrestrial segments (e.g., ships at sea, airplanes in flight) and geosynchronous satellites is burgeoning. This manuscript examines the technological maturation of employing lasers as the signal carrier for satellite communications linking terrestrial and space systems. The purpose of the manuscript is to develop key performance parameters (KPPs) to inform U.S. Department of Defense initial capabilities documents (ICDs) for near-future satellite acquisition and development. By appreciating the history and technological challenges of employing lasers rather than traditional radio frequency sources for satellite uplink and downlink signal carrier, this manuscript recommends ways for the U.S. Department of Defense to employ lasers to transmit and receive high bandwidth, large-throughput data from moving platforms that need to retain low probabilities of detection, intercept, and exploitation (e.g., carrier battle group transiting to a hostile area of operations, unmanned aerial vehicle collecting over adversary areas). The manuscript also intends to identify commercial sector early-adopter fields and those fields likely to adapt to laser employment for transmission and receipt. U.S. Air Force |
Databáze: | OpenAIRE |
Externí odkaz: |