Non-freeness of Groups Generated by Two Parabolic Elements with Small Rational Parameters

Autor: Thomas Koberda, Sang-hyun Kim
Rok vydání: 2022
Předmět:
Zdroj: Michigan Mathematical Journal. 71
ISSN: 0026-2285
DOI: 10.1307/mmj/20205868
Popis: Let $q\in\mathbb{C}$, let \[a=\begin{pmatrix} 1&0\\1&1\end{pmatrix},\quad b_q=\begin{pmatrix} 1&q\\0&1\end{pmatrix},\] and let $G_q27$, we prove that the lower density of denominators $r\in \mathbb{N}$ for which $G_{s/r}$ is non-free has a lower bound \[ 1- \left(1-\frac{11}{s}\right) \prod_{n=1}^\infty \left(1-\frac{4}{s^{2^n-1}}\right). \] Finally, we show that for a fixed $s$, there are arbitrarily long sequences of consecutive denominators $r$ such that $G_{s/r}$ is non-free. The proofs of some of the results are computer assisted, and Mathematica code has been provided together with suitable documentation.
Comment: 26 pages. To appear in the Michigan Mathematical Journal
Databáze: OpenAIRE