Supersymmetry and cotangent bundle over non-compact exceptional Hermitian symmetric space
Autor: | Kurando Baba, Masato Arai |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2015 |
Předmět: |
Hermitian symmetric space
Physics High Energy Physics - Theory Nuclear and High Energy Physics Sigma FOS: Physical sciences Supersymmetry Superspace Hermitian matrix Nonlinear system High Energy Physics::Theory High Energy Physics - Theory (hep-th) Trigonometric functions Cotangent bundle Mathematics::Symplectic Geometry Mathematical physics |
Zdroj: | Journal of High Energy Physics |
Popis: | We construct N=2 supersymmetric nonlinear sigma models on the cotangent bundles over the non-compact exceptional Hermitian symmetric spaces M=E_{6(-14)}/SO(10)xU(1) and E_{7(-25)}/E_6xU(1). In order to construct them we use the projective superspace formalism which is an N=2 off-shell superfield formulation in four-dimensional space-time. This formalism allows us to obtain the explicit expression of N=2 supersymmetric nonlinear sigma models on the cotangent bundles over any Hermitian symmetric spaces in terms of the N=1 superfields, once the Kahler potentials of the base manifolds are obtained. We derive the N=1 supersymmetric nonlinear sigma models on the Kahler manifolds M. Then we extend them into the N=2 supersymmetric models with the use of the result in arXiv:1211.1537 developed in the projective superspace formalism. The resultant models are the N=2 supersymmetric nonlinear sigma models on the cotangent bundles over the Hermitian symmetric spaces M. In this work we complete constructing the cotangent bundles over all the compact and non-compact Hermitian symmetric spaces. 37 pages, 1 table, V2:introduction modified, reference added, V3:title and abstract changed, 1 figure added, derivation of (co)tangent bundle over E_{7(-25)}/E_6xU(1) added, reference added, sections and appendices rearranged according to the mentioned changes, V4: typos corrected, V5: typos corrected, version to appear in JHEP |
Databáze: | OpenAIRE |
Externí odkaz: |