Globalization of supercuspidal representations over function fields and applications
Autor: | Wee Teck Gan, Luis Lomelí |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
Classical group
Pure mathematics Mathematics - Number Theory Applied Mathematics General Mathematics Ramification (botany) 010102 general mathematics Function (mathematics) Unipotent Reductive group 01 natural sciences Number theory Poincaré series 0103 physical sciences FOS: Mathematics Number Theory (math.NT) 010307 mathematical physics 0101 mathematics Local field Mathematics |
Zdroj: | Journal of the European Mathematical Society |
Popis: | Let H be a connected reductive group defined over a non-archimedean local field F of characteristic p>0. Using Poincar\'e series, we globalize supercuspidal representations of H(F) in such a way that we have control over ramification at all other places, and such that the notion of distinction with respect to a unipotent subgroup (indeed more general subgroups) is preserved. In combination with the work of Vincent Lafforgue on the global Langlands correspondence, we present some applications, such as the stability of Langlands-Shahidi \gamma-factors and the local Langlands correspondence for classical groups. |
Databáze: | OpenAIRE |
Externí odkaz: |