Capillary filling at the microscale: Control of fluid front using geometry
Autor: | Ivon Rodriguez-Villarreal, Aurora Hernández-Machado, E. Costa-Miracle, Tomás Alarcón, Joan Cid, Claudia Trejo-Soto |
---|---|
Přispěvatelé: | Universitat de Barcelona |
Rok vydání: | 2016 |
Předmět: |
Physiology
lcsh:Medicine Plant Science 02 engineering and technology Blood plasma Physical Chemistry Biochemistry 01 natural sciences Physics::Fluid Dynamics Viscosity Glycols Materials Physics Medicine and Health Sciences Fluid dynamics Range (statistics) Plant Hormones lcsh:Science 51 - Matemàtiques Microscale chemistry Physics Fluids Multidisciplinary Organic Compounds Plant Biochemistry Classical Mechanics Hematology Mechanics 021001 nanoscience & nanotechnology Body Fluids Chemistry Blood Physical Sciences Viscositat Matemàtiques Anatomy 0210 nano-technology Research Article States of Matter Materials Science Fluid Mechanics Continuum Mechanics Blood Plasma Ethylene Position (vector) 0103 physical sciences Newtonian fluid 010306 general physics Fluid Flow Glicols Organic Chemistry lcsh:R Chemical Compounds Front (oceanography) Biology and Life Sciences Fluid Dynamics Liquids Plasma sanguini Models Theoretical Hormones Capillaries Chemical Properties Cardiovascular Anatomy Blood Vessels lcsh:Q Order of magnitude |
Zdroj: | RECERCAT (Dipòsit de la Recerca de Catalunya) Recercat: Dipósit de la Recerca de Catalunya Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya) Dipòsit Digital de la UB Universidad de Barcelona PLoS ONE, Vol 11, Iss 4, p e0153559 (2016) Recercat. Dipósit de la Recerca de Catalunya instname PLoS ONE |
Popis: | We propose an experimental and theoretical framework for the study of capillary filling at the micro-scale. Our methodology enables us to control the fluid flow regime so that we can characterise properties of Newtonian fluids such as their viscosity. In particular, we study a viscous, non-inertial, non-Washburn regime in which the position of the fluid front increases linearly with time for the whole duration of the experiment. The operating shear-rate range of our apparatus extends over nearly two orders of magnitude. Further, we analyse the advancement of a fluid front within a microcapillary in a system of two immiscible Newtonian liquids. We observe a non-Washburn regime in which the front can accelerate or decelerate depending on the viscosity contrast between the two liquids. We then propose a theoretical model which enables us to study and explain both non-Washburn regimes. Furthermore, our theoretical model allows us to put forward ways to control the emergence of these regimes by means of geometrical parameters of the experimental set-up. Our methodology allows us to design and calibrate a micro-viscosimetre which works at constant pressure. |
Databáze: | OpenAIRE |
Externí odkaz: |