Capillary filling at the microscale: Control of fluid front using geometry

Autor: Ivon Rodriguez-Villarreal, Aurora Hernández-Machado, E. Costa-Miracle, Tomás Alarcón, Joan Cid, Claudia Trejo-Soto
Přispěvatelé: Universitat de Barcelona
Rok vydání: 2016
Předmět:
Physiology
lcsh:Medicine
Plant Science
02 engineering and technology
Blood plasma
Physical Chemistry
Biochemistry
01 natural sciences
Physics::Fluid Dynamics
Viscosity
Glycols
Materials Physics
Medicine and Health Sciences
Fluid dynamics
Range (statistics)
Plant Hormones
lcsh:Science
51 - Matemàtiques
Microscale chemistry
Physics
Fluids
Multidisciplinary
Organic Compounds
Plant Biochemistry
Classical Mechanics
Hematology
Mechanics
021001 nanoscience & nanotechnology
Body Fluids
Chemistry
Blood
Physical Sciences
Viscositat
Matemàtiques
Anatomy
0210 nano-technology
Research Article
States of Matter
Materials Science
Fluid Mechanics
Continuum Mechanics
Blood Plasma
Ethylene
Position (vector)
0103 physical sciences
Newtonian fluid
010306 general physics
Fluid Flow
Glicols
Organic Chemistry
lcsh:R
Chemical Compounds
Front (oceanography)
Biology and Life Sciences
Fluid Dynamics
Liquids
Plasma sanguini
Models
Theoretical

Hormones
Capillaries
Chemical Properties
Cardiovascular Anatomy
Blood Vessels
lcsh:Q
Order of magnitude
Zdroj: RECERCAT (Dipòsit de la Recerca de Catalunya)
Recercat: Dipósit de la Recerca de Catalunya
Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya)
Dipòsit Digital de la UB
Universidad de Barcelona
PLoS ONE, Vol 11, Iss 4, p e0153559 (2016)
Recercat. Dipósit de la Recerca de Catalunya
instname
PLoS ONE
Popis: We propose an experimental and theoretical framework for the study of capillary filling at the micro-scale. Our methodology enables us to control the fluid flow regime so that we can characterise properties of Newtonian fluids such as their viscosity. In particular, we study a viscous, non-inertial, non-Washburn regime in which the position of the fluid front increases linearly with time for the whole duration of the experiment. The operating shear-rate range of our apparatus extends over nearly two orders of magnitude. Further, we analyse the advancement of a fluid front within a microcapillary in a system of two immiscible Newtonian liquids. We observe a non-Washburn regime in which the front can accelerate or decelerate depending on the viscosity contrast between the two liquids. We then propose a theoretical model which enables us to study and explain both non-Washburn regimes. Furthermore, our theoretical model allows us to put forward ways to control the emergence of these regimes by means of geometrical parameters of the experimental set-up. Our methodology allows us to design and calibrate a micro-viscosimetre which works at constant pressure.
Databáze: OpenAIRE