Practical Unstructured Splines: Algorithms, Multi-Patch Spline Spaces, and Some Applications to Numerical Analysis
Autor: | Stefano Frambati, Hélène Barucq, Henri Calandra, Julien Diaz |
---|---|
Přispěvatelé: | Modélisation et simulation de la propagation des ondes fondées sur des mesures expérimentales pour caractériser des milieux géophysiques et héliophysiques et concevoir des objets complexes (MAKUTU), Laboratoire de Mathématiques et de leurs Applications [Pau] (LMAP), Université de Pau et des Pays de l'Adour (UPPA)-Centre National de la Recherche Scientifique (CNRS)-Université de Pau et des Pays de l'Adour (UPPA)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut Polytechnique de Bordeaux (Bordeaux INP) |
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Journal of Computational Physics Journal of Computational Physics, 2022, 471, pp.111625. ⟨10.1016/j.jcp.2022.111625⟩ |
ISSN: | 1556-5068 0021-9991 1090-2716 |
Popis: | International audience; In this work, we show how some recent advances on simplex spline spaces can be used to construct a polynomial-reproducing space of unstructured splines on multi-patch domains of arbitrary shape and topology. The traces of these functions on the subdomain boundaries reproduce the usual traces of standard polynomial bases used in discontinuous Galerkin (DG) approximations, allowing to borrow many theoretical and practical tools from these methods. Concurrently, we recast some theoretical results on the construction and evaluation of spaces of simplex splines into an explicit, algorithmic form. Together, these efforts allow to formulate a practical, efficient and fully unstructured multi-patch discontinuous Galerkin-isogeometric analysis (DG-IGA) scheme that bridges the gap between some current multi-patch isogeometric analysis (IGA) approaches and the more traditional mesh-based interior penalty discontinuous Galerkin (IPDG) method. We briefly discuss the advantages of this unified framework for time-explicit hyperbolic problems, and we present some interesting numerical examples using the acoustic wave equation. |
Databáze: | OpenAIRE |
Externí odkaz: |