Retinal artery/vein classification using genetic-search feature selection
Autor: | Bart M. ter Haar Romeny, Behdad Dashtbozorg, Tao Tan, Fan Huang |
---|---|
Přispěvatelé: | Medical Image Analysis |
Rok vydání: | 2018 |
Předmět: |
Power graph analysis
Computer science Image quality Image Processing Retinal Artery 02 engineering and technology Fundus (eye) Pattern Recognition Automated 030218 nuclear medicine & medical imaging Machine Learning chemistry.chemical_compound 0302 clinical medicine Models Image Processing Computer-Assisted Computer-Assisted/methods 0202 electrical engineering electronic engineering information engineering Image resolution Statistical Computer Science Applications Feature (computer vision) cardiovascular system 020201 artificial intelligence & image processing Artifacts Algorithms Automated Image Processing Computer-Assisted/methods Artery/vein classification ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION Health Informatics Feature selection Pattern Recognition Sensitivity and Specificity 03 medical and health sciences Humans False Positive Reactions Retinal Vein/diagnostic imaging Probability Electronic Data Processing Models Statistical Pixel business.industry Retinal Artery/diagnostic imaging Fundus image Reproducibility of Results Pattern recognition Retinal Retinal Vein Genetic search feature selection chemistry Programming Languages Artificial intelligence Focus (optics) business Software |
Zdroj: | Computer Methods and Programs in Biomedicine, 161, 197-207. Elsevier Ireland Ltd |
ISSN: | 0169-2607 |
DOI: | 10.1016/j.cmpb.2018.04.016 |
Popis: | Background and objectives: The automatic classification of retinal blood vessels into artery and vein (A/V) is still a challenging task in retinal image analysis. Recent works on A/V classification mainly focus on the graph analysis of the retinal vasculature, which exploits the connectivity of vessels to improve the classification performance. While they have overlooked the importance of pixel-wise classification to the final classification results. This paper shows that a complicated feature set is efficient for vessel centerline pixels classification. Methods: We extract enormous amount of features for vessel centerline pixels, and apply a genetic-search based feature selection technique to obtain the optimal feature subset for A/V classification. Results: The proposed method achieves an accuracy of 90.2%, the sensitivity of 89.6%, the specificity of 91.3% on the INSPIRE dataset. It shows that our method, using only the information of centerline pixels, gives a comparable performance as the techniques which use complicated graph analysis. In addition, the results on the images acquired by different fundus cameras show that our framework is capable for discriminating vessels independent of the imaging device characteristics, image resolution and image quality. Conclusion: The complicated feature set is essential for A/V classification, especially on the individual vessels where graph-based methods receive limitations. And it could provide a higher entry to the graph-analysis to achieve a better A/V labeling. |
Databáze: | OpenAIRE |
Externí odkaz: |