Singular extremals in L^1 optimal control problems: sufficient optimality conditions

Autor: Laura Poggiolini, Francesca Chittaro
Přispěvatelé: Contrôle et Diagnostic pour l’Environnement (CDE), Laboratoire d'Informatique et Systèmes (LIS), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Université de Toulon (UTLN), Dipartimento di Matematica Applicata [Firenze] (DMA), Università degli Studi di Firenze = University of Florence [Firenze] (UNIFI), Università degli Studi di Firenze = University of Florence [Firenze], Università degli Studi di Firenze = University of Florence (UniFI)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: ESAIM: Control, Optimisation and Calculus of Variations
ESAIM: Control, Optimisation and Calculus of Variations, EDP Sciences, 2020, 26, pp.99. ⟨10.1051/cocv/2020023⟩
ESAIM: Control, Optimisation and Calculus of Variations, 2020, 26, pp.99. ⟨10.1051/cocv/2020023⟩
ISSN: 1292-8119
1262-3377
DOI: 10.1051/cocv/2020023⟩
Popis: In this paper we are concerned with generalisedL1-minimisation problems,i.e.Bolza problems involving the absolute value of the control with a control-affine dynamics. We establish sufficient conditions for the strong local optimality of extremals given by the concatenation of bang, singular and inactive (zero) arcs. The sufficiency of such conditions is proved by means of Hamiltonian methods. As a by-product of the result, we provide an explicit invariant formula for the second variation along the singular arc.
Databáze: OpenAIRE