Protective Effect of Dietary Taurine from ROS Production in European Seabass under Conditions of Forced Swimming
Autor: | Simona Rimoldi, Basim S.A. Al-Sulaivany, Genciana Terova, Chiara Ceccotti, Marco Saroglia, Omar A.M. Al-Habbib |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
feed additive
Taurine Antioxidant medicine.medical_treatment Feed additive medicine.disease_cause Article Superoxide dismutase 03 medical and health sciences chemistry.chemical_compound Fish meal lcsh:Zoology medicine Food science lcsh:QL1-991 030304 developmental biology chemistry.chemical_classification reactive oxygen species 0303 health sciences lcsh:Veterinary medicine General Veterinary biology critical swim speed Chemistry Glutathione peroxidase 04 agricultural and veterinary sciences respiratory burst activity aquaculture Catalase 040102 fisheries biology.protein 0401 agriculture forestry and fisheries lcsh:SF600-1100 Animal Science and Zoology Oxidative stress |
Zdroj: | Animals, Vol 9, Iss 9, p 607 (2019) Animals Volume 9 Issue 9 Animals : an Open Access Journal from MDPI |
ISSN: | 2076-2615 |
Popis: | Taurine (Tau) is an amino sulfonic acid, which is widely distributed in animal tissues, whereas it is almost lacking in plants with the exception of certain algae, seaweeds, and few others. In the aquafeed industry, Tau is mainly used as a feed additive to promote growth in marine fish species with limited cysteine sulfinate decarboxylase activity. In particular, Tau supplementation is required in feeds in which fishmeal (FM) is substituted with high percentages of plant-derived protein sources such as soybean meals (SBM) that have much lower levels of Tau than FM. In addition to being a growth promoter, Tau exert powerful antioxidant properties being a scavenger of the reactive oxygen species (ROS). Under sustained swimming conditions, an intracellular increase in ROS production can occur in fish red muscle where the abundance of mitochondria (the main site of ROS formation) is high. Accordingly, this study aimed at investigating the effects of dietary Tau on European seabass (Dicentrarchus labrax) growth and oxidative stress response induced by swimming exercise. Individually tagged fish of 92.57 ± 20.33 g mean initial weight were fed two experimental diets containing the same low percentage of FM and high percentage of SBM. One diet was supplemented with 1.5% of Tau. Tau supplemented in the diet had a positive effect on fish growth, and enhanced swimming performance and antioxidant status. Two swim endurance tests were performed during the feeding trial. Metabolic oxygen consumption (MO2) was measured during exercise at incremental swimming speeds (0.7, 1.4, 2.1, 2.8, 3.5, and then 4.2 BL (body length) s&minus 1, until fatigue). Fish maximal sustainable swimming speed (Ucrit) was determined too. To investigate the antioxidant effect of dietary Tau, we also measured ROS production in fish blood by RBA (respiratory burst activity) assay and quantified the expression of genes coding for antioxidant enzymes by qPCR (quantitative polymerase chain reaction) , such as SOD (superoxide dismutase), GPX (glutathione peroxidase), and CAT (catalase) in red muscle and liver. There was a significant effect of Tau upon Ucrit during exercise. Additionally, ROS production was significantly lower in fish fed with Tau supplemented diet, supporting the role of Tau as ROS scavenger. The protective effect of Tau against oxidative stress induced by forced swimming was denoted also by a significant decrease in antioxidant enzymes gene expression in fish liver and muscle. Taken together these results demonstrate that Tau is beneficial in low FM-based diets for seabass. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |