Local linear density estimation for filtered survival data, with bias correction

Autor: Carsten Tanggaard, Jens Perch Nielsen, M. C. Jones
Jazyk: angličtina
Rok vydání: 2009
Předmět:
Zdroj: Nielsen, J P, Tanggaard, C & Jones, M C 2009, ' Local linear density estimation for filtered survival data, with bias correction ', Statistics, vol. 43, no. 2, pp. 167-186 . https://doi.org/10.1080/02331880701736648
ISSN: 0233-1888
DOI: 10.1080/02331880701736648
Popis: A class of local linear kernel density estimators based on weighted least-squares kernel estimation is considered within the framework of Aalen's multiplicative intensity model. This model includes the filtered data model that, in turn, allows for truncation and/or censoring in addition to accommodating unusual patterns of exposure as well as occurrence. It is shown that the local linear estimators corresponding to all different weightings have the same pointwise asymptotic properties. However, the weighting previously used in the literature in the i.i.d. case is seen to be far from optimal when it comes to exposure robustness, and a simple alternative weighting is to be preferred. Indeed, this weighting has, effectively, to be well chosen in a 'pilot' estimator of the survival function as well as in the main estimator itself. We also investigate multiplicative and additive bias-correction methods within our framework. The multiplicative bias-correction method proves to be the best in a simulation study comparing the performance of the considered estimators. An example concerning old-age mortality demonstrates the importance of the improvements provided. A class of local linear kernel density estimators based on weighted least-squares kernel estimation is considered within the framework of Aalen's multiplicative intensity model. This model includes the filtered data model that, in turn, allows for truncation and/or censoring in addition to accommodating unusual patterns of exposure as well as occurrence. It is shown that the local linear estimators corresponding to all different weightings have the same pointwise asymptotic properties. However, the weighting previously used in the literature in the i.i.d. case is seen to be far from optimal when it comes to exposure robustness, and a simple alternative weighting is to be preferred. Indeed, this weighting has, effectively, to be well chosen in a 'pilot' estimator of the survival function as well as in the main estimator itself. We also investigate multiplicative and additive bias-correction methods within our framework. The multiplicative bias-correction method proves to be the best in a simulation study comparing the performance of the considered estimators. An example concerning old-age mortality demonstrates the importance of the improvements provided.
Databáze: OpenAIRE