Is a seasonally reduced growth potential a convergent strategy to survive drought and frost in plants?

Autor: Florence Volaire, Karim Barkaoui, David Grémillet, Guillaume Charrier, Olivier Dangles, Laurent J Lamarque, Nicolas Martin-StPaul, Isabelle Chuine
Přispěvatelé: Centre d’Ecologie Fonctionnelle et Evolutive (CEFE), Université Paul-Valéry - Montpellier 3 (UPVM)-École Pratique des Hautes Études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro Montpellier, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Montpellier (UM), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Agrosystèmes Biodiversifiés (UMR ABSys), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre International de Hautes Etudes Agronomiques Méditerranéennes - Institut Agronomique Méditerranéen de Montpellier (CIHEAM-IAMM), Centre International de Hautes Études Agronomiques Méditerranéennes (CIHEAM)-Centre International de Hautes Études Agronomiques Méditerranéennes (CIHEAM)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro Montpellier, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Département Performances des systèmes de production et de transformation tropicaux (Cirad-PERSYST), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad), University of Cape Town, Percy FitzPatrick Institute of African Ornithology, Laboratoire de Physique et Physiologie Intégratives de l’Arbre en environnement Fluctuant (PIAF), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Clermont Auvergne (UCA), Departement des sciences de l’environnement [Trois-Rivieres], Université du Québec à Trois-Rivières (UQTR), Ecologie des Forêts Méditerranéennes (URFM)
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Annals of Botany
Annals of Botany, 2023, 131 (2), pp.245-254. ⟨10.1093/aob/mcac153⟩
ISSN: 0305-7364
1095-8290
DOI: 10.1093/aob/mcac153⟩
Popis: Background Plants have adapted to survive seasonal life-threatening frost and drought. However, the timing and frequency of such events are impacted by climate change, jeopardizing plant survival. Understanding better the strategies of survival to dehydration stress is therefore timely and can be enhanced by the cross-fertilization of research between disciplines (ecology, physiology), models (woody, herbaceous species) and types of stress (drought, frost). Scope We build upon the ‘growth–stress survival’ trade-off, which underpins the identification of global plant strategies across environments along a ‘fast–slow’ economics spectrum. Although phenological adaptations such as dormancy are crucial to survive stress, plant global strategies along the fast–slow economic spectrum rarely integrate growth variations across seasons. We argue that the growth–stress survival trade-off can be a useful framework to identify convergent plant ecophysiological strategies to survive both frost and drought. We review evidence that reduced physiological activity, embolism resistance and dehydration tolerance of meristematic tissues are interdependent strategies that determine thresholds of mortality among plants under severe frost and drought. We show that complete dormancy, i.e. programmed growth cessation, before stress occurrence, minimizes water flows and maximizes dehydration tolerance during seasonal life-threatening stresses. We propose that incomplete dormancy, i.e. the programmed reduction of growth potential during the harshest seasons, could be an overlooked but major adaptation across plants. Quantifying stress survival in a range of non-dormant versus winter- or summer-dormant plants, should reveal to what extent incomplete to complete dormancy could represent a proxy for dehydration tolerance and stress survival. Conclusions Our review of the strategies involved in dehydration stress survival suggests that winter and summer dormancy are insufficiently acknowledged as plant ecological strategies. Incorporating a seasonal fast–slow economics spectrum into global plant strategies improves our understanding of plant resilience to seasonal stress and refines our prevision of plant adaptation to extreme climatic events.
Databáze: OpenAIRE