Equilibrium-Driven Adaptive Behavior Design

Autor: Paul Olivier, Juan Manuel Moreno Arostegui
Přispěvatelé: Universitat Politècnica de Catalunya. Departament d'Enginyeria Electrònica, Universitat Politècnica de Catalunya. AHA - Arquitectures Hardware Avançades
Předmět:
Zdroj: Recercat. Dipósit de la Recerca de Catalunya
instname
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Advances in Computational Intelligence ISBN: 9783642214974
IWANN (2)
Popis: In autonomous robotics, scalability is a primary discriminator for evaluating a behavior design methodology. Such a proposed methodology must also allow efficient and effective conversion from desired to implemented behavior. From the concepts of equilibrium and homeostasis, it follows that behavior could be seen as driven rather than controlled. Homeostatic variables allow the development of need elements to completely implement drive and processing elements in a synthetic nervous system. Furthermore, an autonomous robot or system must act with a sense of meaning as opposed to being a human-command executor. Learning is fundamental in adding adaptability, and its efficient implementation will directly improve scalability. It is shown how using classical conditioning to learn obstacle avoidance can be implemented with need elements instead of an existing artificial neural network (ANN) solution.
Databáze: OpenAIRE