Generalized Pesin-Like Identity and Scaling Relations at the Chaos Threshold of the Rössler System
Autor: | Kivanc Cetin, Ugur Tirnakli, Ozgur Afsar |
---|---|
Přispěvatelé: | Ege Üniversitesi |
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
nonlinear dynamics
connections between chaos and statistical physics dissipative systems Generalization General Physics and Astronomy Lyapunov exponent 01 natural sciences Fractal dimension Article 010305 fluids & plasmas Nonlinear Sciences::Chaotic Dynamics Nonlinear system symbols.namesake Flow (mathematics) 0103 physical sciences symbols Statistical physics Logistic map 010306 general physics Scaling Mathematics Poincaré map |
Zdroj: | Entropy Entropy; Volume 20; Issue 4; Pages: 216 |
ISSN: | 1099-4300 |
Popis: | WOS: 000435181600005 In this paper, using the Poincare section of the flow we numerically verify a generalization of a Pesin-like identity at the chaos threshold of the Rossler system, which is one of the most popular three-dimensional continuous systems. As Poincare section points of the flow show similar behavior to that of the logistic map, for the Rossler system we also investigate the relationships with respect to important properties of nonlinear dynamics, such as correlation length, fractal dimension, and the Lyapunov exponent in the vicinity of the chaos threshold. John Templeton Foundation; TUBITAK (Turkish Agency)Turkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [115F492] U.T. is a member of the Science Academy, Istanbul, Turkey and acknowledges partial support from the John Templeton Foundation. This work has been supported by TUBITAK (Turkish Agency) under Research Project number 115F492. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |