Short‐term growth response of jack pine and spruce spp. to wood ash amendment across Canada
Autor: | Ken C.J. Van Rees, Paul W. Hazlett, Colin E. Chisholm, Lisa A. Venier, Caroline E. Emilson, Dave M. Morris, Amanda Diochon, Ruth Joseph, P. Michael Rutherford, Suzanne Brais, Nicolas Bélanger, John Markham |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
lcsh:TJ807-830
Amendment tree growth lcsh:Renewable energy sources 010501 environmental sciences bioenergy lcsh:HD9502-9502.5 01 natural sciences complex mixtures waste reduction Picea engelmannii Bioenergy Soil pH Waste Management and Disposal 0105 earth and related environmental sciences biology Renewable Energy Sustainability and the Environment forest amendment fungi technology industry and agriculture wood ash Forestry Wood ash 04 agricultural and veterinary sciences 15. Life on land biology.organism_classification sustainability Black spruce lcsh:Energy industries. Energy policy. Fuel trade Agronomy 040103 agronomy & agriculture 0401 agriculture forestry and fisheries Environmental science Agronomy and Crop Science Waste disposal Woody plant |
Zdroj: | GCB Bioenergy, Vol 12, Iss 2, Pp 158-167 (2020) |
ISSN: | 1757-1693 1757-1707 |
Popis: | Wood ash amendment to forest soils contributes to the sustainability of the growing bioenergy industry, not only through decreased wood ash waste disposal in landfills but also by increasing soil/site productivity and tree growth. However, tree growth studies to date have reported variable responses to wood ash, highlighting the need to identify proper application rates under various soil/site conditions to maximize their benefits. We explored the influence of tree species, wood ash nutrient application rates, time since application, stand development stage, and initial (i.e., before wood ash application) soil pH and N on short‐term tree growth response to wood ash amendment across eight unique study sites spanning five Canadian Provinces. Jack pine (Pinus banksiana Lamb) had the most positive response to wood ash amendment compared to white (Picea glauca Moench), hybrid (Picea engelmannii x glauca Parry), and black spruce (Picea mariana Miller), where increasing nutrient application rates increased height growth response. In comparison, black spruce had the most negative response to wood ash amendment, where increasing nutrient application rates slightly decreased height growth response. Site as a random effect explained additional variation, highlighting the importance of other unidentified site characteristics. By examining trends in short‐term growth response across multiple studies with variable site characteristics, we found growth response differed by tree species and nutrient application rates, and that jack pine is a promising candidate for wood ash amendment. These results contribute to our knowledge of optimal wood ash amendment practices and environmentally sustainable bioenergy production. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |