Towards a Computer Vision Particle Flow

Autor: Marumi Kado, Jonathan Shlomi, Eilam Gross, Francesco Armando Di Bello, Lorenzo Santi, Sanmay Ganguly, Michael Pitt
Přispěvatelé: Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2021
Předmět:
FOS: Computer and information sciences
Physics - Instrumentation and Detectors
Physics and Astronomy (miscellaneous)
Tracking (particle physics)
particle flow
01 natural sciences
High Energy Physics - Experiment
physics.data-an
Machine Learning
High Energy Physics - Experiment (hep-ex)
Experiment
High Energy Physics - Phenomenology (hep-ph)
Statistics - Machine Learning
[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]
Computer vision
Detectors and Experimental Techniques
calorimeter: cluster
Mathematical Physics and Mathematics
physics.ins-det
computer
Physics
[PHYS]Physics [physics]
Detector
hep-ph
Instrumentation and Detectors (physics.ins-det)
stat.ML
Charged particle
High Energy Physics - Phenomenology
Phenomenology
Granularity
Particle Physics - Experiment
[PHYS.PHYS.PHYS-DATA-AN]Physics [physics]/Physics [physics]/Data Analysis
Statistics and Probability [physics.data-an]

charged particle: tracks
neural network
Other Fields of Physics
FOS: Physical sciences
jet: energy resolution
Context (language use)
Machine Learning (stat.ML)
lcsh:Astrophysics
0103 physical sciences
lcsh:QB460-466
lcsh:Nuclear and particle physics. Atomic energy. Radioactivity
High Energy Physics
[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]
010306 general physics
Neutral particle
numerical calculations
Engineering (miscellaneous)
spatial resolution
Particle Physics - Phenomenology
Calorimeter (particle physics)
010308 nuclear & particles physics
business.industry
hep-ex
High Energy Physics
Experiment
Phenomenology
Instrumentation and Detectors
Machine Learning

Physics - Data Analysis
Statistics and Probability

[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]
Particle
lcsh:QC770-798
Artificial intelligence
business
Data Analysis
Statistics and Probability (physics.data-an)

Instrumentation and Detectors
Zdroj: Eur.Phys.J.C
Eur.Phys.J.C, 2021, 81 (2), pp.107. ⟨10.1140/epjc/s10052-021-08897-0⟩
European Physical Journal C: Particles and Fields, Vol 81, Iss 2, Pp 1-14 (2021)
European Physical Journal
DOI: 10.1140/epjc/s10052-021-08897-0⟩
Popis: In High Energy Physics experiments Particle Flow (PFlow) algorithms are designed to provide an optimal reconstruction of the nature and kinematic properties of the particles produced within the detector acceptance during collisions. At the heart of PFlow algorithms is the ability to distinguish the calorimeter energy deposits of neutral particles from those of charged particles, using the complementary measurements of charged particle tracking devices, to provide a superior measurement of the particle content and kinematics. In this paper, a computer vision approach to this fundamental aspect of PFlow algorithms, based on calorimeter images, is proposed. A comparative study of the state of the art deep learning techniques is performed. A significantly improved reconstruction of the neutral particle calorimeter energy deposits is obtained in a context of large overlaps with the deposits from charged particles. Calorimeter images with augmented finer granularity are also obtained using super-resolution techniques.
Comment: 15 pages, 10 figures. Note to admin : updating to journal version
Databáze: OpenAIRE