Weak transport inequalities and applications to exponential and oracle inequalities

Autor: Olivier Wintenberger
Přispěvatelé: Laboratoire de Statistique Théorique et Appliquée (LSTA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), University of Copenhagen = Københavns Universitet (UCPH), Université Pierre et Marie Curie - Paris 6 (UPMC), University of Copenhagen = Københavns Universitet (KU)
Jazyk: angličtina
Rok vydání: 2015
Předmět:
Zdroj: Electronic Journal of Probability
Electronic Journal of Probability, 2015, 20, pp.114. ⟨10.1214/EJP.v20-3558⟩
Electron. J. Probab.
Electronic Journal of Probability, Institute of Mathematical Statistics (IMS), 2015, 20, pp.114. ⟨10.1214/EJP.v20-3558⟩
ISSN: 1083-6489
DOI: 10.1214/EJP.v20-3558⟩
Popis: International audience; We study the dimension-free inequalities, see Talagrand [49], for non-product measures extending Marton's [39] weak transport from the Hamming distance to other metrics. The Euclidian norm is proved to be appropriate for dealing with non-product measures associated with classical time series. Our approach to address dependence, based on coupling of trajectories, weakens previous contractive arguments used in [20] and [41]. Following Bobkov-Götze's [10] approach, we derive sub-Gaussianity and a convex Poincaré inequality for non-product measures that are not uniformly mixing, extending the Samson's [48] results. Such dimension-free inequalities are useful for applications in statistics. Expressing the concentration properties of the ordinary least squares estimator as a weak transport problem, we obtain new oracle inequalities with fast rates of convergence for classical time series models.
Databáze: OpenAIRE