Extracting multilayer networks from Sentinel-2 satellite image time series

Autor: Danny Lo Seen, Giuseppe Scarpa, Raffaele Gaetano, Roberto Interdonato, Mathieu Roche
Přispěvatelé: Interdonato, R., Gaetano, R., Lo Seen, D., Roche, M., Scarpa, G., Territoires, Environnement, Télédétection et Information Spatiale (UMR TETIS), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-AgroParisTech-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Département Environnements et Sociétés (Cirad-ES), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad), Dipartimento di Ingegneria Elettrica e delle Tecnologie dell'Informazione [Napoli] (DIETI), Università degli studi di Napoli Federico II, French National Centre for Space Studies (CNES), as part of the AMORIS (Analyse et MOdelisation des Reseaux complexes issus de l'Imagerie Satellitaire) project, APR TOSCA 2019
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Earth observation
010504 meteorology & atmospheric sciences
Sociology and Political Science
Social Psychology
Computer science
Télédétection
satellite image time series
0211 other engineering and technologies
[SDU.STU]Sciences of the Universe [physics]/Earth Sciences
02 engineering and technology
Imagerie par satellite
computer.software_genre
01 natural sciences
landscape stratification
multilayer network
remote sensing
Sentinel-2
Information discovery
Observation satellitaire
021101 geological & geomatics engineering
0105 earth and related environmental sciences
business.industry
U10 - Informatique
mathématiques et statistiques

Communication
Deep learning
Réseaux d'observation terrestre
Complex network
Information extraction
Reference data
[SDE]Environmental Sciences
Satellite Image Time Series
Data mining
Artificial intelligence
U30 - Méthodes de recherche
business
computer
Analyse de séries chronologiques
Network analysis
satellite image time serie
Zdroj: Network Science
Network Science, Cambridge University Press, 2020, 8 (S1), pp.S26-S42. ⟨10.1017/nws.2019.58⟩
ISSN: 2050-1250
DOI: 10.1017/nws.2019.58⟩
Popis: Nowadays, modern Earth Observation systems continuously generate huge amounts of data. A notable example is the Sentinel-2 Earth Observation mission, developed by the European Space Agency as part of the Copernicus Programme, which supplies images from the whole planet at high spatial resolution (up to 10 m) with unprecedented revisit time (every 5 days at the equator). In this data-rich scenario, the remote sensing community is showing a growing interest toward modern supervised machine learning techniques (e.g., deep learning) to perform information extraction, often underestimating the need for reference data that this framework implies. Conversely, few attention is being devoted to the use of network analysis techniques, which can provide a set of powerful tools for unsupervised information discovery, subject to the definition of a suitable strategy to build a network-like representation of image data. The aim of this work is to provide clues on how Satellite Image Time Series can be profitably represented using complex network models, by proposing a methodology to build a multilayer network from such data. This is the first work to explore the possibility to exploit this model in the remote sensing domain. An example of community detection over the provided network in a real-case scenario for the mapping of complex land use systems is also presented, to assess the potential of this approach.
Databáze: OpenAIRE