Functional characterization and structural bases of two class I diterpene synthases in pimarane-type diterpene biosynthesis

Autor: Changbiao Chi, Donghui Yang, Hongli Jia, Annan Li, Luqi Huang, Jiahui Yu, Qingxia Xu, Zhengdong Wang, Ming Ma, Fuling Yin, Baiying Xing, Xueyang Ma, Tan Liu, Yuanjie Ge, Juan Guo
Rok vydání: 2021
Předmět:
Zdroj: Communications Chemistry, Vol 4, Iss 1, Pp 1-11 (2021)
ISSN: 2399-3669
DOI: 10.1038/s42004-021-00578-z
Popis: Pimarane-type diterpenoids are widely distributed in all domains of life, but no structures or catalytic mechanisms of pimarane-type diterpene synthases (DTSs) have been characterized. Here, we report that two class I DTSs, Sat1646 and Stt4548, each accept copalyl diphosphate (CPP) as the substrate to produce isopimara-8,15-diene (1). Sat1646 can also accept syn-CPP and produce syn-isopimaradiene/pimaradiene analogues (2–7), among which 2 possesses a previously unreported "6/6/7" ring skeleton. We solve the crystal structures of Sat1646, Sat1646 complexed with magnesium ions, and Stt4548, thereby revealing the active sites of these pimarane-type DTSs. Substrate modeling and subsequent site-directed mutagenesis experiments demonstrate different structural bases of Sat1646 and Stt4548 for 1 production. Comparisons with previously reported DTSs reveal their distinct carbocation intermediate stabilization mechanisms, which control the conversion of a single substrate CPP into structurally diverse diterpene products. These results illustrate the structural bases for enzymatic catalyses of pimarane-type DTSs, potentially facilitating future DTS engineering and combinatorial biosynthesis. Pimaranes are diterpenoid natural products with poorly characterised biosynthetic pathways. Here pimaranetype diterpenoid synthases are functionally and structurally characterised and shown to exploit distinct modes of intermediate stabilisation.
Databáze: OpenAIRE