The effect of noble metal (M: Ir, Pt, Pd) on M/Ce2 O3-γ-Al2 O3 catalysts for hydrogen production via the steam reforming of glycerol
Autor: | G. Siakavelas, Kyriaki Polychronopoulou, Maria A. Goula, Nikolaos D. Charisiou, Nikolaos Dimitratos, Victor Sebastian, Davide Motta, Kyriakos N. Papageridis |
---|---|
Přispěvatelé: | Charisiou N.D., Siakavelas G.I., Papageridis K.N., Motta D., Dimitratos N., Sebastian V., Polychronopoulou K., Goula M.A. |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Ir catalysts
Thermal desorption spectroscopy Inorganic chemistry 02 engineering and technology engineering.material lcsh:Chemical technology 010402 general chemistry complex mixtures 01 natural sciences Catalysis lcsh:Chemistry Steam reforming Hydrogenolysis Pt catalysts Glycerol steam reforming lcsh:TP1-1185 Physical and Theoretical Chemistry Temperature-programmed reduction Incipient wetness impregnation Hydrogen production Ceria-alumina support Chemistry Pd catalyst food and beverages 021001 nanoscience & nanotechnology 0104 chemical sciences Pd catalysts lcsh:QD1-999 engineering Noble metal Ir catalyst 0210 nano-technology |
Zdroj: | Catalysts Volume 10 Issue 7 Catalysts, Vol 10, Iss 790, p 790 (2020) |
Popis: | A promising route for the energetic valorisation of the main by-product of the biodiesel industry is the steam reforming of glycerol, as it can theoretically produce seven moles of H2 for every mole of C3H8O3. In the work presented herein, CeO2&ndash Al2O3 was used as supporting material for Ir, Pd and Pt catalysts, which were prepared using the incipient wetness impregnation technique and characterized by employing N2 adsorption&ndash desorption, X-Ray Diffraction (XRD), Temperature Programmed Reduction (TPR), Temperature Programmed Desorption (TPD), X-ray Photoelectron Spectroscopy (XPS) and Transmission Electron Microscopy (TEM). The catalytic experiments aimed at identifying the effect of temperature on the total conversion of glycerol, on the conversion of glycerol to gaseous products, the selectivity towards the gaseous products (H2, CO2, CO, CH4) and the determination of the H2/CO and CO/CO2 molar ratios. The main liquid effluents produced during the reaction were quantified. The results revealed that the Pt/CeAl catalyst was more selective towards H2, which can be related to its increased number of Brø nsted acid sites, which improved the hydrogenolysis and dehydrogenation&ndash dehydration of condensable intermediates. The time-on-stream experiments, undertaken at low Water Glycerol Feed Ratios (WGFR), showed gradual deactivation for all catalysts. This is likely due to the dehydration reaction, which leads to the formation of unsaturated hydrocarbon species and eventually to carbon deposition. The weak metal&ndash support interaction shown for the Ir/CeAl catalyst also led to pronounced sintering of the metallic particles. |
Databáze: | OpenAIRE |
Externí odkaz: |