Regularity and Matching Pursuit Feature Extraction for the Detection of Epileptic Seizures
Autor: | Pierrick Legrand, Leonardo Trujillo, Emigdio Z-Flores, Arturo Sotelo, Luis N. Coria |
---|---|
Přispěvatelé: | Instituto Tecnológico de Tijuana [Tijuana], Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), Quality control and dynamic reliability (CQFD), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), European Project: 612689,EC:FP7:PEOPLE,FP7-PEOPLE-2013-IRSES,ACOBSEC(2013), Instituto Tecnológico de Tijuana = Tijuana Institute of Technology [Tijuana], Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest |
Jazyk: | angličtina |
Rok vydání: | 2016 |
Předmět: |
Computer science
Feature extraction 02 engineering and technology Electroencephalography Machine learning computer.software_genre Sensitivity and Specificity [INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] 03 medical and health sciences Epilepsy 0302 clinical medicine Seizures 0202 electrical engineering electronic engineering information engineering medicine Humans Statistical analysis Analysis of Variance medicine.diagnostic_test business.industry General Neuroscience Matching pursuit algorithms Brain Signal Processing Computer-Assisted Pattern recognition medicine.disease Matching pursuit Random forest Feature (computer vision) 020201 artificial intelligence & image processing Artificial intelligence business computer 030217 neurology & neurosurgery |
Zdroj: | Journal of Neuroscience Methods Journal of Neuroscience Methods, Elsevier, 2016, 266, pp.107-125. ⟨10.1016/j.jneumeth.2016.03.024⟩ Journal of Neuroscience Methods, 2016, 266, pp.107-125. ⟨10.1016/j.jneumeth.2016.03.024⟩ |
ISSN: | 0165-0270 |
DOI: | 10.1016/j.jneumeth.2016.03.024⟩ |
Popis: | International audience; BackgroundThe neurological disorder known as epilepsy is characterized by involuntary recurrent seizures that diminish a patient's quality of life. Automatic seizure detection can help improve a patient's interaction with her/his environment, and while many approaches have been proposed the problem is still not trivially solved.MethodsIn this work, we present a novel methodology for feature extraction on EEG signals that allows us to perform a highly accurate classification of epileptic states. Specifically, Hölderian regularity and the Matching Pursuit algorithm are used as the main feature extraction techniques, and are combined with basic statistical features to construct the final feature sets. These sets are then delivered to a Random Forests classification algorithm to differentiate between epileptic and non-epileptic readings.ResultsSeveral versions of the basic problem are tested and statistically validated producing perfect accuracy in most problems and 97.6% accuracy on the most difficult case. Comparison with existing methods: A comparison with recent literature, using a well known database, reveals that our proposal achieves state-of-the-art performance.ConclusionsThe experimental results show that epileptic states can be accurately detected by combining features extracted through regularity analysis, the Matching Pursuit algorithm and simple time-domain statistical analysis. Therefore, the proposed method should be considered as a promising approach for automatic EEG analysis. |
Databáze: | OpenAIRE |
Externí odkaz: |