Comparing Prevalence Estimates From Population-Based Surveys to Inform Surveillance Using Electronic Health Records

Autor: Sharon E. Perlman, Katharine H. McVeigh, Pui Ying Chan, Elizabeth Lurie-Moroni, Lorna E. Thorpe, Kathleen S. Tatem, Matthew L. Romo
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: Preventing Chronic Disease
ISSN: 1545-1151
Popis: INTRODUCTION Electronic health record (EHR) systems provide an opportunity to use a novel data source for population health surveillance. Validation studies that compare prevalence estimates from EHRs and surveys most often use difference testing, which can, because of large sample sizes, lead to detection of significant differences that are not meaningful. We explored a novel application of the two one-sided t test (TOST) to assess the equivalence of prevalence estimates in 2 population-based surveys to inform margin selection for validating EHR-based surveillance prevalence estimates derived from large samples. METHODS We compared prevalence estimates of health indicators in the 2013 Community Health Survey (CHS) and the 2013-2014 New York City Health and Nutrition Examination Survey (NYC HANES) by using TOST, a 2-tailed t test, and other goodness-of-fit measures. RESULTS A ±5 percentage-point equivalence margin for a TOST performed well for most health indicators. For health indicators with a prevalence estimate of less than 10% (extreme obesity [CHS, 3.5%; NYC HANES, 5.1%] and serious psychological distress [CHS, 5.2%; NYC HANES, 4.8%]), a ±2.5 percentage-point margin was more consistent with other goodness-of-fit measures than the larger percentage-point margins. CONCLUSION A TOST with a ±5 percentage-point margin was useful in establishing equivalence, but a ±2.5 percentage-point margin may be appropriate for health indicators with a prevalence estimate of less than 10%. Equivalence testing can guide future efforts to validate EHR data.
Databáze: OpenAIRE