Comparing hydrothermal sintering and cold sintering process: Mechanisms, microstructure, kinetics and chemistry
Autor: | Mert Y. Sengul, Catherine Elissalde, Jean Marc Thibaud, Adri C. T. van Duin, Dominique Denux, Kosuke Tsuji, Clive A. Randall, Thomas Hérisson de Beauvoir, Graziella Goglio, Sun Hwi Bang, Kenji Takashima, Arnaud Ndayishimiye |
---|---|
Přispěvatelé: | Centre National de la Recherche Scientifique - CNRS (FRANCE), Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE), Université Toulouse III - Paul Sabatier - UT3 (FRANCE), TAIYO YUDEN CO. (JAPAN), The Pennsylvania State University - PENNSTATE (USA), Centre Interuniversitaire de Recherche et d'Ingénierie des Matériaux - CIRIMAT (Toulouse, France), Materials Research Institute, Pennsylvania State University (Penn State), Penn State System-Penn State System, Department of Materials Science and Engineering, Penn State System, TAIYO YUDEN CO., LTD., Centre interuniversitaire de recherche et d'ingenierie des matériaux (CIRIMAT), Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC), Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Department of Mechanical Engineering, This work was supported by Murata Manufacturing Co., Ltd (funding 432-43 42MM, A.N.), the National Science Foundation (DMR-1728634) and AFOSR grant (grant no. FA9550-16-1-0429, C.A.R.). A.C.T.vD acknowledges funding support from the Multi-Scale Fluid-Solid Interactions in Architected and Natural Materials (MUSE) Center funded by U.S. Department of Energy (DOE). MYS acknowledges partial funding support from U.S. National Science Foundation under Award No. DMR-1842922. We gratefully acknowledge Dr. Ke Wang (Materials Characterization Laboratory, Penn State University) for TEM analysis and Dr. Marie-Anne Dourges (Institut des Sciences Moléculaires, UMR 5255) for mercury intrusion porosimetry and fruitful discussions. |
Rok vydání: | 2020 |
Předmět: |
Ceramics
Materials science Matériaux Cold sintering Kinetics Pellets Sintering chemistry.chemical_element 02 engineering and technology Zinc Molecular dynamics 01 natural sciences Hydrothermal circulation [SPI.MAT]Engineering Sciences [physics]/Materials Hydrothermal sintering ReaxFF 0103 physical sciences Materials Chemistry Ceramic 010302 applied physics 021001 nanoscience & nanotechnology Microstructure chemistry Chemical engineering visual_art Ceramics and Composites visual_art.visual_art_medium 0210 nano-technology |
Zdroj: | Journal of the European Ceramic Society Journal of the European Ceramic Society, Elsevier, 2020, 40 (4), pp.1312-1324. ⟨10.1016/j.jeurceramsoc.2019.11.049⟩ |
ISSN: | 0955-2219 |
Popis: | International audience; This study reports the sintering of zinc oxide (ZnO) through the comparison between the hydrothermal sintering (HS) and the cold sintering process (CSP) operating in closed and open conditions, respectively. Sintering was performed at 155 ± 5 °C applying a pressure of 320 MPa, and during different holding times (0 min, 20 min, 40 min and 80 min). Whatever the low sintering process used, ceramics characteristics are almost similar in terms of relative densities and ZnO structure. However, several differences such as the nature of stabilized phases, grain sizes and quantities of residual molecules in the densified pellets, were characterized and explained. The formation of zinc acetate “bridges” was observed ex situ in hydrothermally sintered samples. A detailed ReaxFF molecular dynamics simulation was performed to help understand the formation mechanisms of zinc acetate “bridges” and compare the chemical activities between HS and CSP. |
Databáze: | OpenAIRE |
Externí odkaz: |