Yersiniabactin from Yersinia pestis: biochemical characterization of the siderophore and its role in iron transport and regulation
Autor: | Paul B. Balbo, Heather A. Jones, Jacqueline D. Fetherston, Robert D. Perry, Edward DeMoll |
---|---|
Rok vydání: | 1999 |
Předmět: |
Siderophore
Transcription Genetic Yersinia pestis Iron Siderophores Receptors Cell Surface medicine.disease_cause Microbiology Yersiniabactin chemistry.chemical_compound Bacterial Proteins Phenols Iron-Binding Proteins medicine Yersinia pseudotuberculosis Yersinia enterocolitica Mutation biology Strain (chemistry) Biological Transport Gene Expression Regulation Bacterial biology.organism_classification Thiazoles chemistry Periplasmic Binding Proteins Electrophoresis Polyacrylamide Gel DNA Bacterial Outer Membrane Proteins |
Zdroj: | Microbiology. 145:1181-1190 |
ISSN: | 1465-2080 1350-0872 |
DOI: | 10.1099/13500872-145-5-1181 |
Popis: | A siderophore-dependent iron transport system of the pathogenic yersiniae plays a role in the pathogenesis of these organisms. The structure of the yersiniabactin (Ybt) siderophore produced by Yersinia enterocolitica has been elucidated. This paper reports the purification of Ybt from Yersinia pestis and demonstrates that it has the same structure as Ybt from Y. enterocolitica. Purified Ybt had a formation constant for Fe3+ of approximately 4x10(-36). Addition of purified Ybt from Y. pestis enhanced iron uptake by a siderophore-negative (irp2) strain of Y. pestis. Maximal expression of the Ybt outer-membrane receptor, Psn, in this strain was dependent upon exogenously supplied Ybt. Regulation of Psn expression by Ybt occurred at the transcriptional level. Y. pestis DNA was used to construct irp2 and psn mutations in Yersinia pseudotuberculosis. The irp2 mutant strain no longer synthesized Ybt and the psn mutant strain could not use exogenously supplied Ybt. As in Y. pestis, Ybt was required for maximal expression of Psn. Regulation by Ybt occurred at the transcriptional level. In contrast to Y. pestis, in which a psn mutation does not repress synthesis of Ybt siderophore or expression of the iron-regulated HMWP1 and HMWP2 proteins, the same mutation in Y. pseudotuberculosis partially repressed these products. |
Databáze: | OpenAIRE |
Externí odkaz: |