Constant Depth Decision Rules for multistage optimization under uncertainty

Autor: Arkadi Nemirovski, Anatoli Juditsky, Vincent Guigues
Přispěvatelé: Fundação Getulio Vargas - Escola de Matemática Aplicada [Rio de Janeiro] (FGV/EMAp), Données, Apprentissage et Optimisation (DAO), Laboratoire Jean Kuntzmann (LJK), Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), School of Industrial and Systems Engineering [Georgia Tech] (ISyE), Georgia Institute of Technology [Atlanta], ANR-19-P3IA-0003,MIAI,MIAI @ Grenoble Alpes(2019), Juditsky, Anatoli, MIAI @ Grenoble Alpes - - MIAI2019 - ANR-19-P3IA-0003 - P3IA - VALID
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: European Journal of Operational Research
European Journal of Operational Research, 2021, 295 (1), pp.223-232. ⟨10.1016/j.ejor.2021.02.042⟩
ISSN: 0377-2217
1872-6860
DOI: 10.1016/j.ejor.2021.02.042⟩
Popis: In this paper, we introduce a new class of decision rules, referred to as Constant Depth Decision Rules (CDDRs), for multistage optimization under linear constraints with uncertainty-affected right-hand sides. We consider two uncertainty classes: discrete uncertainties which can take at each stage at most a fixed number d of different values, and polytopic uncertainties which, at each stage, are elements of a convex hull of at most d points. Given the depth μ of the decision rule, the decision at stage t is expressed as the sum of t functions of μ consecutive values of the underlying uncertain parameters. These functions are arbitrary in the case of discrete uncertainties and are poly-affine in the case of polytopic uncertainties. For these uncertainty classes, we show that when the uncertain right-hand sides of the constraints of the multistage problem are of the same additive structure as the decision rules, these constraints can be reformulated as a system of linear inequality constraints where the numbers of variables and constraints is O ( 1 ) ( n + m ) d μ N 2 with n the maximal dimension of control variables, m the maximal number of inequality constraints at each stage, and N the number of stages. As an illustration, we discuss an application of the proposed approach to a Multistage Stochastic Program arising in the problem of hydro-thermal production planning with interstage dependent inflows. For problems with a small number of stages, we present the results of a numerical study in which optimal CDDRs show similar performance, in terms of optimization objective, to that of Stochastic Dual Dynamic Programming (SDDP) policies, often at much smaller computational cost.
Databáze: OpenAIRE