Schur's Lemma for Coupled Reducibility and Coupled Normality

Autor: Dana Lahat, Christian Jutten, Helene Shapiro
Přispěvatelé: Signal et Communications (IRIT-SC), Institut de recherche en informatique de Toulouse (IRIT), Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées, GIPSA - Vision and Brain Signal Processing (GIPSA-VIBS), Département Images et Signal (GIPSA-DIS), Grenoble Images Parole Signal Automatique (GIPSA-lab ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Grenoble Images Parole Signal Automatique (GIPSA-lab ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Department of Mathematics and Statistics, Swarthmore College, Swarthmore College, European Project: 320684,EC:FP7:ERC,ERC-2012-ADG_20120216,CHESS(2013), European Project: 681839,H2020,ERC-2015-CoG,FACTORY(2016), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Toulouse Mind & Brain Institut (TMBI), Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: SIAM Journal on Matrix Analysis and Applications
SIAM Journal on Matrix Analysis and Applications, Society for Industrial and Applied Mathematics, 2019, 40 (3), pp.998-1021. ⟨10.1137/18M1232462⟩
SIAM Journal on Matrix Analysis and Applications, 2019, 40 (3), pp.998-1021. ⟨10.1137/18M1232462⟩
ISSN: 0895-4798
1095-7162
DOI: 10.1137/18M1232462⟩
Popis: Let $\mathcal A = \{A_{ij} \}_{i, j \in \mathcal I}$, where $\mathcal I$ is an index set, be a doubly indexed family of matrices, where $A_{ij}$ is $n_i \times n_j$. For each $i \in \mathcal I$, let $\mathcal V_i$ be an $n_i$-dimensional vector space. We say $\mathcal A$ is reducible in the coupled sense if there exist subspaces, $\mathcal U_i \subseteq \mathcal V_i$, with $\mathcal U_i \neq \{0\}$ for at least one $i \in \mathcal I$, and $\mathcal U_i \neq \mathcal V_i$ for at least one $i$, such that $A_{ij} (\mathcal U_j) \subseteq \mathcal U_i$ for all $i, j$. Let $\mathcal B = \{B_{ij} \}_{i, j \in \mathcal I}$ also be a doubly indexed family of matrices, where $B_{ij}$ is $m_i \times m_j$. For each $i \in \mathcal I$, let $X_i$ be a matrix of size $n_i \times m_i$. Suppose $A_{ij} X_j = X_i B_{ij}$ for all~$i, j$. We prove versions of Schur's Lemma for $\mathcal A, \mathcal B$ satisfying coupled irreducibility conditions. We also consider a refinement of Schur's Lemma for sets of normal matrices and prove corresponding versions for $\mathcal A, \mathcal B$ satisfying coupled normality and coupled irreducibility conditions.
35 pages. Second version corrects some typos in the original submission and makes some changes in MSC classification numbers
Databáze: OpenAIRE