Automatic Learning of Cognitive Exercises for Socially Assistive Robotics

Autor: Antonio Andriella, Aleksandar Taranovic, Alejandro Suárez-Hernández, Javier Segovia-Aguas, Guillem Alenyà, Carme Torras
Přispěvatelé: Universitat Politècnica de Catalunya. Doctorat en Automàtica, Robòtica i Visió, Institut de Robòtica i Informàtica Industrial, Universitat Politècnica de Catalunya. ROBiri - Grup de Robòtica de l'IRI, European Commission, Ministerio de Economía y Competitividad (España)
Rok vydání: 2021
Předmět:
Zdroj: RO-MAN
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Digital.CSIC. Repositorio Institucional del CSIC
instname
2021 30th IEEE International Conference on Robot & Human Interactive Communication (RO-MAN)
DOI: 10.1109/ro-man50785.2021.9515433
Popis: Trabajo presentado en el 30th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), celebrada de forma virtual del 8 al 12 de agosto de 2021
In this paper, we present a learning approach to facilitate the teaching of new board exercises to assistive robotic systems. We formulate the problem as the learning of action models using Boolean predicates, disjunctive preconditions, and existential quantifiers from demonstrations of successful exercise executions. To be able to cope with exercises whose rules depend on a set of features that are initialized at the beginning of each play-out, we introduce the concept of dynamic context. Furthermore, we show how the learnt knowledge can be represented intuitively in a graphical interface that helps the caregiver understand what the system has learnt. As validation, we conducted a user study in which we evaluated whether and to which extent different types of feedback can affect the subjects¿ performance while teaching three types of exercises: (1) sorting numbers; (2) arranging letters; and (3) reproducing shapes sequences in reversed order. The results suggest that textual and graphical feedback are beneficial.
A. Andriella, C. Torras and A. Suarez-Hernandez were partially funded ´ by the European Union´s Horizon 2020 under ERC Advanced Grant CLOTHILDE (no. 741930), G. Alenya by the EU H2020 research and ` innovation programme IMAGINE (no. 731761) and J. Segovia-Aguas by the programme TAILOR (no. 952215). The work was partially supported by the Spanish State Research Agency through the Mar´ıa de Maeztu Seal of Excellence to IRI (MDM-2016-0656).
Databáze: OpenAIRE